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Abstract—A method is proposed to estimate the direction of
arrival (DoA) of a traveling wave from characteristic mode
weighting coefficients. These are obtained from the currents
through the ports positioned on an antenna structure. The
additional insight into the behavior of the antenna structure
gained by the modal analysis is utilized to create a set of ports
that allows to use a single conducting structure for the direction
finding. It is shown that the proposed method works for a cubic
antenna structure with 20 uncorrelated ports with good accuracy
for any DoA.
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I. INTRODUCTION

In recent years, the popularity of the Theory of Char-

acteristic Modes (TCM) has grown steadily over a wide

range of application scenarios. However, the purpose of the

greater part of the research conducted in this area is linked

to the general demand for reliable, high data rate radio

transmissions, like [1], [2] and [3]. In comparison, the field

of radio direction finding in conjunction with the TCM has

received less attention, although some results have already

been presented. In particular, in [4] and [5] the authors utilize

a multi-mode antenna designed using the TCM and employ

the array interpolation technique and the wavefield modeling

method to estimate the Direction of Arrival (DoA) for multiple

incoming waves. An application example where the TCM is

used in conjunction with a statistical model for DoA estimation

has already been presented in [6].

The approach of this paper is directed towards the modal

parameters and port specifications instead. These shall be

utilized to show that antenna structures consisting of a single

radiating element are suitable for DoA estimation by using the

TCM. Due to their flexible geometry and compact size, these

antenna structures are suited for many different applications,

including unmanned aerial systems (UAS).

A brief introduction into characteristic modes is given in

section II-A. For the proposed direction finding procedure,

the current on an antenna structure caused by an incident

plane wave has to be measured in samples provided by

ports positioned on the structure. The port currents are then

decomposed into modal port currents and an estimation of

the modal weighting coefficients is obtained, as described in

section II-B. The modal parameters will provide additional

insight into the behavior of the structure and the ports. In

section II-C it is shown how the DoA of the incident wave can

be obtained from these modal weighting coefficients. Section

III contains an example based on a cubic antenna structure.

II. PROPOSED METHOD

A. Characteristic Modes

The characteristic modes (CM) of a perfectly conducting

body can be computed from the generalized eigenvalue equa-

tion [7]

XIn = λnRIn , (1)

where R and X are the real and imaginary parts of the

impedance matrix of the structure, respectively. The Nmax-by-

Nmax impedance matrix can be calculated from the Method

of Moments (MoM) after applying a discrete mesh of Nmax

basis functions to the body. λn is the eigenvalue of the nth

characteristic mode and In is the eigenvector of that mode.

If I is a vector containing current weights for an arbitrary

current on the conducting body, normalized to radiate unit

power, it can be expanded according to [8]

I =

Nmax∑

n=1

bnIn =

Nmax∑

n=1

I
H
nV

1 + jλn

In . (2)

Here, bn is the normalized modal weighting coefficient, V

contains the weights to the normalized impressed electric

field, j is the imaginary unit and (·)H denotes the conjugate

transpose. We can rewrite (2) as a matrix-vector product

I = ICMb , (3)

where b is a column vector containing the normalized modal

weighting coefficients bn for all Nmax characteristic modes

and ICM is a matrix whose columns are the corresponding

eigenvectors In.

B. Decomposition of Port Currents

In order to be able to utilize the modal weighting coeffi-

cients for calculating the DoA in section II-C, these have to

be determined from the total current on the antenna structure,

which is excited by the incident plane wave. The total current

weights I can be estimated by measuring the current through a

finite number of lumped ports P on the structure. The current

weight through port p is Iports,p and can be obtained from I

by calculating the weighted sum of the current weights at the

feed positions of the port. The column vector Iports contains



the Iports,p for all ports and can be expressed in terms of the

normalized modal weighting vector b by

Iports = Iports,CMb . (4)

It is evident from comparing (3) and (4) that the P -by-Nmax

matrix Iports,CM is obtained by extracting the modal port

current weights Iports,CM,p,n from ICM for each port p and

each characteristic mode n. To do this, the modal currents of

the antenna structure have to be calculated beforehand using

(1). The port-mode-matrix Iports,CM is independent of the

excitation.

The system of linear equations (4) can now be solved

for b to obtain the estimated normalized modal weighting

vector best from the port currents. Since the system of linear

equations has to be solvable, the number of ports must be

equal to or larger than the number of characteristic modes

(P ≥ N ), which implies that in a real application with a

limited number of ports, not all modes can be taken into

consideration (N < Nmax). Moreover, the ports and therefore

the rows of Iports,CM have to be linearly independent of

each other, so each port provides new information. In order

to lower the condition number of the matrix Iports,CM and

thereby improving the numerical stability of the problem, the

ports should also be orthogonal to each other. In general,

the number and positioning of ports determines how well

any current excited on the surface of the antenna can be

measured. The TCM can be utilized to derive a suitable set

of ports: If every port was only correlated with exactly one

of the N most significant modes, any current that can be

expressed as a superposition of these modes could in theory

be calculated with perfect precision from the port currents.

For currents that employ a higher number of characteristic

modes, this setup provides an approximation. Returning to

(4), it therefore becomes clear that reducing the number of

modes used to create Iports,CM from Nmax to N introduces

an error that depends on the current excited by the specific

incident plane wave. This leads in turn to a reduced accuracy

of the estimated normalized modal weighting vector best.

Consequently, selecting those ports and modes that allow for

an optimal approximation of the modal weighting coefficients

is important for the proposed method and will be further

investigated in section III with the aid of an example.

C. Direction finding based on modal weights

The standard procedure for determining the direction of

arrival of an incident plane wave is to employ an array of

separate antenna elements and to calculate the DoA analyti-

cally from the array geometry, the antenna element patterns

and the measured port currents [9]. Since the antenna ports in

this work are all positioned on the same conducting structure,

a different approach is taken here. In a first step, the total

currents on the antenna structure are determined by simulation

for a large number L of different incident plane waves, which

arrive from uniformly distributed angles. Then, the port cur-

rents are extracted. It is assumed that the antenna and the ports

are defined in such a way that in the investigated sector, the

relationship between port currents and DoA is unambiguous.

The estimated normalized modal weighting vector of the lth

DoA best,l is calculated using (4). All acquired results are

saved to an N -by-L reference matrix Bs.

Let us now assume a current on the investigated antenna

structure was excited by a single electromagnetic plane wave

incident from an unknown DoA. After the estimated normal-

ized modal weighting vector best is calculated, the estimated

DoA can be obtained by calculating the correlation between

best and all columns of the previously determined reference

matrix Bs using

ρ(best,bs,l) =
b
H
est · bs,l

||best|| ||bs,l||
, (5)

where bs,l is the lth column of Bs. The DoA belonging to

that bs,l which has the highest correlation with best is the

resulting estimated DoA.

III. DEMONSTRATION USING A CUBE

The optimal direction finder for a general application is

one that offers the same high precision for all possible plane

wave directions of arrival and polarizations. It is clear that a

spherical antenna structure is the theoretical optimum for a

direction finder based on a single conducting body. However,

in real world applications different geometries are preferred

because they are easier to handle and manufacture. In this

work, an ideal cube was chosen as an example structure to

illustrate the proposed DoA estimation procedure. Due to

the symmetry of the cube, it is possible to obtain data for

both azimuth and elevation angles as well as for different

polarizations.

As was stated in section II-B, using orthogonal ports is a

promising approach for obtaining a good estimation of the

modal weighting coefficients. In order to realize the ports, the

design guidelines for symmetric multimode antennas presented

in [10] are applied. These are based on the fact that each char-

acteristic current can be assigned to exactly one irreducible

representation of the symmetry group of the antenna geometry.

The irreducible representations describe how the character-

istic currents transform under the symmetry operations of

the group. Due to the orthogonality theorem for irreducible

representations [11], characteristic currents which belong to

different irreducible representations are orthogonal to each

other. If a port is designed in such a way that it fulfills the

symmetry requirements of a given irreducible representation, it

only excites those characteristic modes belonging to the same

representation [10]. This way, orthogonal ports are realized,

whose maximum number is governed by the number and the

dimensions of the irreducible representations of the symmetry

group. The symmetry group of the cube is the Oh group [11].

Based on this, a symmetry analysis reveals that the cube offers

20 orthogonal ports [10].

One possible implementation of these ports is shown in

Fig. 1. One port consists of several symmetrically placed

feeding points. The position of each lumped feeding point is

indicated by the red line, while the blue arrow determines



Port 1 Port 2 Port 3 Port 4 Ports 5, 6, 7 Ports 8, 9, 10

Port 11 Port 12 Port 13 Port 14 Ports 15, 16, 17 Ports 18, 19, 20

Fig. 1. Feed setups for 20 uncorrelated ports on a cube. Where multiple port numbers are given, the last two can be obtained from the displayed first one by
rotating around the main axis. For ports 3 and 13, some feeding points only have half the amplitude of the other ports, which is marked with shorter arrows.

Fig. 2. Envelope correlation coefficient of ports.

the direction and amplitude of the feed. The feed amplitude

is identical for all feeds of all ports, except for ports 3 and

13, where the feeds on the side surfaces are excited with half

the amplitude of those on the top and bottom surfaces. For

ports 5 to 14, only feeding points on the center of each cube

edge are allowed while for the other ports, all feeds lie on the

half way points between the start and the center of the edge.

The envelope correlation coefficient of the far fields created by

the lumped ports [10] is displayed in Fig. 2 for all lumped port

combinations. As can be seen, there is no correlation between

the far fields of any of the 20 realized ports. For this reason,

we call these ports orthogonal.

We use a perfectly conducting cube with an edge length of a

half wavelength, because the maximum number of orthogonal

ports fits well with the number of characteristic modes that

are close to being significant, while the structure remains rel-

atively small. For aerial applications, signals at the frequencies

1030MHz and 1090MHz are already emitted by many aircraft

due to the airborne collision avoidance system (ACAS) and

can be utilized for direction finding. Therefore, their center

frequency 1060MHz is chosen as an example in this work,

which results in an edge length of around 0.1414m.

It was shown in section II-B that the number of modes

utilized to calculate the modal weights must not exceed the

number of available ports. To get the best insight into the

problem, the number of modes is chosen to be equal to the

number of ports (N = P = 20). Since every characteristic

mode current can be uniquely assigned to a single irreducible

representation of the symmetry group [10], it can only be

measured by a port that belongs to the same irreducible

representation. This means that to utilize all ports, there has to

be the same number of ports and modes for every irreducible

representation. To illustrate this connection, we take a look at

Fig. 4, where the modal significance (MS) in dB is displayed

for the first 48 modes. When selecting the modes for the

application, we start with the most significant mode 1 and

assign it to its irreducible representation. For the next mode,

we first check whether the number of modes already assigned

to its irreducible representation is still below the dimension

of the representation (meaning there is still an unoccupied

port within that representation). This works perfectly for every

mode up to mode 17. However, mode 18 belongs to the 9th

irreducible representation Γ9 of the Oh symmetry group, just

like the modes 15, 16 and 17. Since Γ9 has a dimension of

three, there are three ports belonging to this representation

(15, 16 and 17) and mode 18 would be the fourth mode that

would have to be calculated from the information these three

ports provide. Therefore, this mode cannot be used for the

port-mode matrix Iports,CM. The same principle leads to the



Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Mode 11 Mode 12 Mode 13 Mode 14 Mode 15 Mode 16 Mode 17 Mode 27 Mode 34 Mode 48

Fig. 3. Selection of characteristic mode current densities supported by the cube. For scale refer to the colorbar in Fig. 5
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Fig. 4. Modal significance of the first 48 modes on the cube. Modes not used for the DoA estimation are displayed as transparent bars.

exclusion of all modes that are marked with transparent bars in

Fig. 4. Finally, the modes 1 to 17, 27, 34 and 48 are selected.

Their surface current densities are displayed in Fig. 3. Even

though the higher order modes are not significant, simulations

have shown that utilizing them increases the accuracy of the

final DoA estimation in comparison to only using the first 17

modes.

After the modes are selected, the port-mode matrix can be

calculated. The magnitude of its entries is shown in Fig. 5.

It can be observed that most modes only interact with a

single port. Modes 10 and 11 as well as 13 and 14 interact

only with the two ports from their respective representation,

which has no negative effect on the port orthogonality and

thus the accuracy of the procedure. Modes 15 and beyond

have some minor impact on the measurement results of ports

from other representations, but this does not influence the

condition number of the matrix significantly and therefore has

no degrading impact on the numerical stability of the system

of linear equations (4).

Since all parameters have been defined that are necessary

to determine the estimated normalized modal weighing vec-

tor best, the direction finding method described in section II-C

can now be applied to the cubic antenna structure. Firstly, a

spherical grid with a step width of 10 degrees in both azimuth

and elevation is assembled around the cube. On every knot

of the grid, a plane wave source directed towards the center

of the cube is positioned. Here, only azimuthal polarization

is considered to validate the general procedure. For each of

these excitations, a method of moments simulation is run and

the modal weights are estimated from the calculated lumped

Fig. 5. Magnitude of the entries in the port-mode matrix Iports,CM,p,n of
the selected setup, normalized to the maximum value of each port.

port currents on the cube. After assembling the reference

matrix Bs, the performance can be tested.

In the following, an error is defined as the difference

between the actual and the estimated direction of arrival. The

errors for azimuth and elevation are combined by calculating

the euclidean norm in degrees. When testing with any of the

original DoAs used to assemble Bs, no errors occur. This

proves that the specific combination of selected geometry,
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Fig. 6. Distribution of errors of the estimated DoA for the proposed example
setup, obtained by using randomly distributed DoAs for testing. Based on the
reference data, the accuracy is roughly 7 degrees.

ports and modes does not contain any ambiguity. For the

second test, the testing DoAs are positioned in the center

between the points of the spherical grid. Thereby, each one has

a distance of 5
√
2 degrees to each of the four neighboring grid

knots. When the DoA estimation is executed, each testing DoA

is matched to one of its four neighbors, which is the optimal

behavior. A third and final test is carried out by using randomly

distributed DoAs. On each 10◦ × 10◦ patch of the grid, ten

DoAs were randomly chosen from a uniform distribution. The

distribution of the errors that occurred during this simulation

is plotted in Fig. 6. Over 95% of the simulated DoAs resulted

in errors lower than the theoretical maximum accuracy of

5
√
2 ≈ 7 degrees, while some outliers lead to errors as high as

12 degrees. The relatively high maximum error shows that for

a few DoAs, the limited number of utilized ports and modes

limits the resolution of the procedure. However, most of the

errors observed could be mitigated by reducing the step size of

the spherical grid and thereby using more DoAs as reference to

generate the matrix Bs. Overall, the proposed method provides

good results for the example. This shows that it is possible to

determine the DoA from modal parameters.

IV. CONCLUSION

A procedure was introduced that allows a direction of

arrival estimation based on the weighting coefficients of the

characteristic modes supported by a single conducting antenna

structure. As an example, a cubic antenna structure with 20

ports and an edge length of a half wavelength was investigated.

In simulations based on this example, the procedure worked

with good accuracy. While the DoA estimation would also

work without the modal weighting coefficients by using the

port currents instead, the proposed approach offers additional

insight into the behavior of the antenna. The knowledge gained

from this approach was utilized to derive a port placement

procedure for the multi mode antenna.

In future work, this knowledge shall be used to derive

generalized design rules for multi mode antennas in direction

finding applications.
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