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Abstract—A systematic procedure for constructing orthogonal
antenna ports on arbitrary symmetric multimode antennas is
proposed. The procedure is based on the projection operator
method from group theory. With this method, optimal orthogonal
port configurations are generated analytically. Electromagnetic
simulations, modal analyses, or optimization techniques are not
required. The optimal port configurations are solely governed
by the symmetry of an antenna and can thus be considered as
a priori knowledge. Accordingly, this knowledge is available right
from the beginning of the design process and can be purposefully
used to compare different suitable antenna geometries with
respect to the practical implementation effort. The procedure
is illustrated by means of an application example resulting in a
complete prototype of a six-port multimode antenna.

Index Terms—Characteristic modes, multimode antenna, sym-
metry, group theory, antenna theory, antenna diversity.

I. INTRODUCTION

THE application of multimode antennas in multiple-input

multiple-output (MIMO) systems is a promising, space-

efficient alternative to using multiantenna architectures. In

conventional antenna arrays, the elements need to be located

spatially apart in order to provide spatial diversity [1], [2].

In contrast, multimode antennas consist of a single physical

antenna element with several independent antenna ports of-

fering a combination of pattern and polarization diversity [3].

Ideally, each port of a multimode antenna drives a specific

antenna mode with distinct radiation pattern and polarization.

This way, uncorrelated antenna ports are created, which is

most beneficial for MIMO performance [4], [5].

Over the past decade, the theory of characteristic modes [6]–

[8] has been employed extensively in order to design multi-

mode antennas in an intuitive way. This design approach is

based on the fact that the characteristic modes of an antenna

possess advantageous orthogonality properties [7]. The ports

of a multimode antenna are thus intended to excite mutually

exclusive sets of characteristic modes [9]. This way, perfectly

uncorrelated (orthogonal) antenna ports can be realized.

As proposed in early pioneering work [10]–[14], suitable

antenna ports are defined by inspecting the surface current

densities of the characteristic modes. In order to reproduce

the desired modal behavior, feed points are distributed on the

antenna element. A single antenna port consists of several such

feed points which are driven simultaneously by means of a

feed network. More recent designs basically rely on the same
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concept, yielding compact multimode antennas with up to four

perfectly uncorrelated ports [15]–[17].1

Unfortunately, this intuitive design approach has its limi-

tations. In order to excite different characteristic modes sep-

arately, their respective surface current densities need to be

uncorrelated [9]. However, this is in general not guaranteed

by the theory of characteristic modes.2 As a consequence, an

antenna port that is supposed to excite a certain characteristic

mode will generally also excite all those modes whose surface

current densities are correlated. This limits the degrees of

freedom for realizing orthogonal antenna ports (cf. [18], [19]).

The correlation of the characteristic surface current densities

is related to the symmetry of an antenna [19]. Only sym-

metric antenna geometries provide mutually orthogonal sets

of characteristic surface current densities, and only these sets

of modes can be excited separately by appropriately designed

antenna ports [9]. However, the number of these sets is dictated

by the symmetry of an antenna and is thus limited, regardless

of the number of modes taken into account. Consequently,

there is an upper bound for orthogonal antenna ports which is

solely governed by the symmetry of an antenna [9].

The exploitation of symmetries has recently sparked consid-

erable interest in the context of characteristic modes [9], [20]–

[24]. Interestingly, all the above-mentioned pioneering multi-

mode antenna designs [10]–[17] can be explained within the

framework of the symmetry analysis presented in [9]. In fact,

leveraging symmetries can be considered the natural extension

of the intuitive design approach based on characteristic modes.

A first step in this regard is proposed in [22], [23], where

point group theory is utilized in order to enable uncorrelated

MIMO channels. These works demonstrate the principal ben-

efits of exploiting symmetries for antenna design. However,

the derived idealized feeding scheme is only available within

a method of moments (MoM) framework and practical design

consequences are not discussed.

Therefore, this work aims at combining a thorough theoret-

ical analysis with direct implications for a practical antenna

design. Exploiting the connection between the characteristic

modes of an antenna and its symmetry, a systematic and

automated design procedure for arbitrary symmetric multi-

mode antennas is proposed. It is demonstrated that the optimal

port configurations are governed by the symmetry of a given

antenna geometry alone. Thus, a characteristic mode analysis

1The terms perfectly uncorrelated and orthogonal are employed in order
to emphasize that a design concept ideally yields antenna ports with zero
correlation, as e.g. presented in this work. This is in contrast to design
strategies which accept a certain level of correlation from the start, e.g. [18].

2The characteristic surface current densities are orthogonal with respect to
the impedance operator, but are not necessarily directly orthogonal to each
other. This is only true for the characteristic far fields [7].
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Fig. 1. Equilateral triangular plate. (a) Geometry. (b) Symmetry operations.

is not even required. Instead, a priori knowledge about the

optimal port configurations is gained completely analytically.

To this end, the construction of orthogonal antenna ports is

explained in section II. An application example is discussed

in section III, where a desired number of orthogonal antenna

ports are constructed. The resulting fabricated prototype is

presented in section IV and its performance is evaluated.

II. PORT CONSTRUCTION PROCEDURE

The proposed port construction procedure is based on the

fundamental connection between the characteristic modes of

an antenna and its symmetry [25]. This connection is briefly

recapped in an illustrative way. Then, the so-called projection

operators are introduced and exploited in order to construct

orthogonal antenna ports analytically.

A. Fundamentals

In order to realize orthogonal antenna ports, mutually or-

thogonal sets of characteristic surface current densities are

required [9]. As an example, Table I lists a selection of

twelve characteristic surface current densities on an equilateral

triangular plate (Fig. 1(a)). The correlation of these current

densities is shown in Fig. 2. Four mutually orthogonal sets

of characteristic surface current densities are identified. The

modes are sorted accordingly. It is noticed that the character-

istic surface current densities belonging to the same set possess

the same symmetry properties [19]. In order to quantify this

observation, the theory of symmetry has to be applied.

The coordinate transformations which leave an antenna

invariant (symmetry operations) form the so-called symmetry

group of the antenna [26]. For example, the symmetry group

of the equilateral triangular plate contains the six operations

listed in Fig. 1(b) [27]. The number of symmetry operations

is called the group order g (here: g = 6).

The principal question is how the characteristic surface

current densities are affected by such symmetry operations.

Mathematically, the effect of an arbitrary symmetry opera-

tion T on some vector-valued function f(r) : R3 → C
3 is

described by the transformation operator P (T ) [28]. The

transformed function f
′(r) is written as

f
′(r) = P (T )f(r) = R(T )f

(

R
T(T )r

)

, (1)

with r = (x, y, z)T. R(T ) is the rotation matrix representing

the symmetry operation T , which can be readily computed for

any rotation according to [28] (see appendix A).

Fig. 2. Correlation coefficients |̺µν | of the characteristic surface current
densities from Table I. Dark blue is equal to zero.

TABLE I
SELECTED CHARACTERISTIC SURFACE CURRENT DENSITIES OF

EQUILATERAL TRIANGULAR PLATE WITH R = 0.6 WAVELENGTHS AND

ASSIGNMENT TO IRREDUCIBLE REPRESENTATIONS.

Γ(1) Γ(2) Γ(3)

J
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J
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J
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J
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J
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J
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J
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6
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(a) J1 (b) J4 (c) −J4

Fig. 3. Transformation of characteristic surface current densities. (a) J1

is invariant under all six symmetry operations: P (T )J1 = J1 ∀ T ∈ G.
(b) J4 is invariant under the identity and the rotations about the z-axis:
P (T )J4 = +J4 for T ∈ {E,C3z , C

2
3z}. (c) J4 is inverted by the rotations

about the other axes: P (T )J4 = −J4 for T ∈ {C2x, C2A, C2B}.

The transformation operators are now applied to the char-

acteristic surface current densities, as exemplarily illustrated

in Fig. 3. This way, it is found that all characteristic surface

current densities of the equilateral triangular plate transform

in one of four different ways (cf. Table I), namely according

to the so-called irreducible representations of the symmetry

group. The characteristic surface current densities are thus said

to act as basis functions of the irreducible representations [25].

An irreducible representation assigns a representation ma-

trix Γ
(p)(T ) to each symmetry operation T of the group [28].

The elements Γ
(p)
mn(T ) of these matrices (row index m, column
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TABLE II
REPRESENTATION MATRICES OF THE SYMMETRY GROUP OF THE EQUILATERAL TRIANGULAR PLATE.

E C3z C2
3z C2x C2A C2B

Γ
(1)(T ) 1 1 1 1 1 1

Γ
(2)(T ) 1 1 1 −1 −1 −1

Γ
(3)(T )

(

1 0

0 1

) (

−1/2
√
3/2

−
√
3/2 −1/2

) (

−1/2 −
√
3/2√

3/2 −1/2

) (

1 0

0 −1

) (

−1/2
√
3/2√

3/2 1/2

) (

−1/2 −
√
3/2

−
√
3/2 1/2

)

index n) describe the transformation of the characteristic

surface current densities. A finite symmetry group possesses

a finite number of irreducible representations. The p-th irre-

ducible representation is denoted by the symbol Γ(p). It is

said to be dp-dimensional if the corresponding characteristic

surface current densities are dp-fold degenerate. The respective

representation matrices Γ(p)(T ) are of dimension dp × dp. For

example, the symmetry group of the equilateral triangular plate

has three irreducible representations Γ(1), Γ(2), and Γ(3) [27].

The first two ones are one-dimensional (d1;2 = 1), whereas

the third one is two-dimensional (d3 = 2). The corresponding

representation matrices are listed in Table II.

Obviously, the irreducible representations arise naturally in

conjunction with characteristic modes. Each characteristic sur-

face current density can be assigned to exactly one irreducible

representation [9] (e.g. see Table I). This assignment yields

mutually orthogonal sets, as evidenced by Fig. 2. These sets of

modes can be excited separately by antenna ports that, too, act

as basis functions of the irreducible representations [9]. The

equilateral triangular plate, for example, offers a maximum of

four orthogonal antenna ports [9].

B. Projection Operators

The optimal port configurations have to act as basis func-

tions of the irreducible representations. The projection oper-

ator method is an established technique from group theory

whose purpose is to derive basis functions of irreducible

representations [28], [29]. Therefore, it is ideally suited for

the construction of orthogonal antenna ports.

The projection operator P(p)
mn of the dp-dimensional p-th ir-

reducible representation Γ(p) of a finite symmetry group G of

order g is defined as [28]

P(p)
mn =

dp
g

∑

T∈G

Γ(p)∗
mn (T )P (T ), m, n = 1, 2, . . . , dp. (2)

A projection operator is a weighted sum of the transfor-

mation operators P (T ) over all symmetry operations T of

the symmetry group G. The weighting coefficients are the

complex conjugate elements Γ
(p)∗
mn (T ) of the representation

matrices Γ
(p)(T ) (e.g. Table II).

The application of the projection operator P(p)
mn to an

arbitrary function f(r) yields [28]

P(p)
mnf(r) = γ(p)

n ψ
(p)
m (r), (3)

where γ
(p)
n is a weighting coefficient and ψ

(p)
m (r) is called the

basis function belonging to the m-th row of the p-th irreducible

representation. The application of the projection operator P(p)
mn

to an arbitrary function projects out of it the basis function

V

(a) P (E)Ei

V

(b) P (C3z)Ei

V

(c) P (C2
3z)Ei

V

(d) P (C2x)Ei

V

(e) P (C2A)Ei

V

(f) P (C2B)Ei

Fig. 4. Transformation of the initial port configuration consisting of one
delta-gap voltage source on the axis A due to the symmetry operations of the
equilateral triangular plate. Delta-gap voltage sources denoted by black lines
and arrows. (a) Original delta-gap voltage source (identity transformation).
(b)–(f) Transformed delta-gap voltage sources. Computation in appendix A.

which belongs to the m-th row of the p-th irreducible repre-

sentation. This property is now made use of.

C. Construction of Orthogonal Antenna Ports

The port construction procedure is best illustrated by means

of an example. The equilateral triangular plate offers four

orthogonal antenna ports. The optimal port configurations are

now derived by means of the projection operators.

An antenna port is represented by an impressed electric

field strength. In order to enable an analytical treatment of the

antenna ports, the feed points on the antenna are modeled as

delta-gap voltage sources [30]. These can be readily replaced

by excitation slots [31] at a later design stage (see section IV).

First of all, an initial port configuration has to be chosen

from which the orthogonal antenna ports are constructed

according to (3). It will become apparent throughout this

subsection that a good choice is to place a single delta-gap

voltage source on a symmetry axis (here: axis A), as illustrated

in Fig. 4(a) and Fig. 5(a). The corresponding impressed

electric field strength Ei(r) is expressed as follows:

Ei(x, y) = V δ
(

x− 1

2
r, y −

√
3

2
r
)

(√
3/2

−1/2

)

, (4)

where δ(r) is the Dirac delta function, V is an arbitrary source

voltage, and r is the incircle radius according to Fig. 1.

For the computation of the projection operators, the trans-

formation operators P (T ) are required. They are readily com-

puted according to (1). The transformation of the initial port
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Fig. 5. Construction of orthogonal ports, part I. (a) Initial port configuration.
(b) Port 2 belonging to Γ(2) constructed with operator P(2)

11 . (c) Port 3
belonging to the first row of Γ(3) constructed with operator P(3)

11 or P(3)
12 .

(d) Port 4 belonging to the second row of Γ(3) constructed with operator
P(3)
21 or P(3)

22 . Delta-gap voltage sources denoted by black lines and arrows.

V

(a)

⇒ V

V

V

V
V

V

(b) Port 1

Fig. 6. Construction of orthogonal ports, part II. (a) Alternative initial port
configuration. (b) Port 1 belonging to Γ(1) constructed with operator P(1)

11 .
Delta-gap voltage sources denoted by black lines and arrows.

configuration (4) under the symmetry operations of the equi-

lateral triangular plate is illustrated in Fig. 4. The application

of a projection operator P(p)
mn to the initial port configuration

is equivalent to a weighted sum of these transformed port

configurations according to (2). The weighting coefficients

are the elements of the representation matrices (Table II). All

computations presented in this section can be performed both

graphically (Fig. 4–6) and analytically (appendix A).

The first antenna port is intended to act as a basis function

of the first irreducible representation Γ(1) (d1 = 1). Hence,

the projection operator P(1)
11 with p = 1 is applied to the

initial port configuration. In this case, however, the projection

yields zero. This result simply means that a port configuration

belonging to the first irreducible representation cannot be

constructed with this setup. If a projection yields zero, another

initial port configuration has to be chosen (see below).

The second antenna port is intended to act as a basis

function of the second irreducible representation Γ(2) (d2 = 1).

Hence, the projection operator P(2)
11 with p = 2 is applied next.

In this case, the projection yields a suitable port configuration

as illustrated in Fig. 5(b).

The third irreducible representation Γ(3) is two-dimensional

(d3 = 2). Hence, two orthogonal basis functions belong to it.

The third and the fourth antenna ports are intended to act as

basis functions of this irreducible representation. According

to (3), the index m (row index) distinguishes the two basis

functions. Hence, either the projection operator P(3)
11 or P(3)

12

with p = 3 and m = 1 can be applied to construct the third

port. Likewise, either P(3)
21 or P(3)

22 with p = 3 and m = 2
can be applied to construct the fourth port. The resulting port

configurations are depicted in Fig. 5(c) and (d).

For the construction of the first port, it has been found that

a delta-gap voltage source on a symmetry axis is not suitable.

Therefore, the voltage source is now shifted to a half-edge

(a) (b) (c)

Fig. 7. Envelope correlation coefficients (ECC) of equilateral triangular plate
with ports as defined in Fig. 6(b) and Fig. 5(b)–(d) for different circumradii R
as functions of the wavelength λ. (a) R = 0.5λ. (b) R = λ. (c) R = 2λ.

center between two symmetry axes as illustrated in Fig. 6(a).

The alternative impressed electric field strength Ei,2(r) is

Ei,2(x, y) = V δ
(

x− 5

4
r, y −

√
3

4
r
)

(√
3/2

−1/2

)

. (5)

The application of P(1)
11 now yields a suitable port configura-

tion as shown in Fig. 6(b).

In this work, antenna ports consisting of as few feed points

as possible are considered optimal. As a general guideline,

a single delta-gap voltage source placed on a symmetry

axis should be used as the initial port configuration. Those

ports which cannot be generated this way are subsequently

constructed from the alternative initial port configuration

consisting of a single delta-gap voltage source placed half-

way between two symmetry axes. The applicability of this

guideline will be confirmed by the examples in section III.

The orthogonality of the four antenna ports is now checked

by means of the envelope correlation coefficients (ECC) [9].

To this end, the far field radiation patterns excited by the

antenna ports are computed with the method of moments [30].

The ECC calculated from these radiation patterns are shown in

Fig. 7, confirming the orthogonality of the four antenna ports.

III. APPLICATION EXAMPLE

The literature review in section I reveals that multimode

antennas with up to four uncorrelated antenna ports have been

reported. By means of the methodology presented in this paper,

in theory, an arbitrary number of orthogonal antenna ports can

be constructed by choosing a suitable antenna geometry [9].

However, the practical implementation effort to be expected

should be taken into account right from the beginning of the

design process. This can now be done conveniently thanks to

the a priori knowledge from the port construction procedure.

In order to demonstrate this, it is supposed that a multimode

antenna with six orthogonal antenna ports is to be realized.

A lot of different symmetric antenna geometries are suitable

for this task from a theoretical point of view [9]. The best

choice can thus only be made from a practical point of view. In

particular, the feed network, which is required for connecting

the antenna ports to the respective feed points, is expected to

be a major source of complexity (cf. [14]–[17]).

In this example, a square plate and a regular hexagonal

plate are analyzed as suitable basic antenna geometries. Planar

geometries are chosen as they enable low-profile designs and

integration capabilities (cf. [15], [17], and section IV).
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Fig. 8. Construction of orthogonal antenna ports on square plate. (a) Initial
port configuration consisting of one delta-gap voltage source at edge center
for constructing ports 2, 4, 5, and 6. (b) Alternative initial port configuration
consisting of one delta-gap voltage source at half-edge center for constructing
ports 1 and 3. (c)–(h) Constructed orthogonal antenna ports. Delta-gap voltage
sources denoted by black lines and arrows.

A. Square Plate

The square plate is the regular polygonal plate of lowest

order offering six orthogonal antenna ports [9]. The port

construction procedure (section II-C) is now applied.

A single delta-gap voltage source placed at an edge center is

taken as the initial port configuration, as depicted in Fig. 8(a).

Applying the projection operators of the different irreducible

representations to this initial port configuration yields the

ports 2, 4, 5, and 6 as shown in Fig. 8(d), (f), (g), and (h),

respectively. Four out of the six possible port configurations

can be constructed this way. The two remaining ports 1 and 3
require an alternative initial port configuration on a half-

edge center, as depicted in Fig. 8(b). Applying the projection

operators of the remaining irreducible representations yields

the port configurations shown in Fig. 8(c) and (e), respectively.

Again, two simple initial port configurations consisting

each of one single delta-gap voltage source are sufficient for

obtaining all optimal port configurations. The ports which are

constructed from the same initial port configuration share the

same feed points (ports 1 and 3 as well as ports 2, 4, 5,

and 6). Consequently, two independent feed networks can be

employed in order to drive the two sets of ports. Additionally,

the feed points of all six ports are driven with the same

source voltage (equal amplitude distribution). This has the

consequence that the respective feed networks only have to

adjust the phase relations between the feed points.

B. Regular Hexagonal Plate

The regular hexagonal plate offers a maximum of eight

orthogonal antenna ports [9]. Of course, there is nothing to

V

(a)

V

V

V
V

V

V

(b) Port 1

V

V

V

V

V

V

(c) Port 2

V

0.5V

V

0.5V

0.5V

0.5V

(d) Port 3

V

V V

V

(e) Port 4

V

V

0.5V

0.5V

0.5V

0.5V

(f) Port 5

V V

VV

(g) Port 6

Fig. 9. Construction of orthogonal antenna ports on regular hexagonal plate.
(a) Initial port configuration consisting of one delta-gap voltage source at edge
center for constructing ports 1 to 6. (b)–(g) Constructed orthogonal antenna
ports. Delta-gap voltage sources denoted by black lines and arrows.

be said against realizing only six ports.

Once again, the initial port configuration consists of a single

delta-gap voltage source at an edge center (Fig. 9(a)). In the

case of the hexagonal plate, this initial port configuration

is already sufficient in order to generate six optimal port

configurations (Fig. 9(b)–(g)).

In contrast to the square plate, all six ports share the

same feed points. Consequently, a single feed network is

necessary in order to drive all six ports. At first glance, a

single feed network may appear as an advantage compared to

the square plate. However, the more ports per feed network,

the more decoupling effort has to be spent, necessitating more

components and thus a bulkier network. In addition, the ports 3
and 5 demand an unequal amplitude distribution.

It is thus estimated that the square plate requires less

implementation effort. Although two feed networks are nec-

essary, these only have to handle two and four antenna ports,

respectively, with equal amplitude distribution. As will become

apparent in section IV, a low feed network complexity is

important for a reasonable antenna performance.

This example demonstrates how the a priori knowledge

about the optimal port configurations can be exploited in

order to identify a suitable geometry for a multimode antenna

design with a desired number of orthogonal ports. As a general

guideline, a higher number of ports requires a higher symmetry

order. A higher symmetry order, however, requires more feed

points per port and thus more complicated feed networks. The

number of ports is thus primarily a question of how much

implementation effort is to be spent.

IV. PROTOTYPE

In order to demonstrate that the port construction procedure

can be used to design a multimode antenna with uncorrelated
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Fig. 10. Photograph of the fabricated six-port multimode antenna showing
the antenna element, the coaxial baluns, and layer 1 (top layer) of the feed
network (ground plane). The depicted coordinate system serves as reference
for the radiation patterns. The inset shows layer 5 (bottom layer) of the feed
network with the six antenna ports realized as surface-mount SMA connectors.

antenna ports from scratch, a prototype is fabricated. As

discussed in section III, a square geometry is a reasonable

choice enabling six ports with the least implementation effort.

Hence, the optimal port configurations in Fig. 8(c)–(h) are

used as the starting point of the design process.

The principal design step consists of introducing practical

excitation elements in order to enable impedance matching.

Furthermore, a feed network is required in order to distribute

the port signals to the respective feed points with the correct

phase relations. Inspired by the four-port designs in [15]

and [17], the planar antenna element is positioned at a certain

height above a ground plane. The feed network is integrated

below this ground plane. The two parts are joined together by

baluns. In order to give an impression of the design concept,

a photograph of the fabricated prototype is shown in Fig. 10.

The multimode antenna is intended to operate within the ultra-

wide frequency band from 6GHz to 8.5GHz [32], [33].

A. Antenna Element

The layout of the final antenna element is depicted in

Fig. 11. The square plate is mounted on the top layer of a

Rogers RO4350B substrate with the height 508 µm. Based on

a characteristic mode analysis, the edge length is chosen to

be 45mm. This is the minimum size so that for each antenna

port at least one characteristic mode is significant [31].

The ideal delta-gap voltage sources of the constructed

optimal port configurations can be readily replaced by practical

excitation slots [15], [31]. The slot positions along the plate

edges (edge centers, half-edge centers) are directly adopted

from the port configurations in Fig. 8(c)–(h). The feed points

within the excitation slots are denoted by the primed numbers

in Fig. 11. At these points, the feed network has to provide

the correct relative phases as required by the optimal port

configurations (denoted by the voltage directions in Fig. 8).

As detailed in [31], the input impedances of the six antenna

ports can be controlled flexibly by adjusting the slot lengths,

the slot widths, and the feed point positions within the slots.

45

Top layer

Bottom layer

Substrate
RO4350B

Via

12'11'

10'

9'

7'6'

5'

4'

8'

3'

1'

2'

127

x

y

7.75

3
5.5

7.5
5

14

2

8

3.5

2

Hole for inner
conductor of
coaxial balun

Fig. 11. Layout of the final antenna element. The actual antenna surface with
square symmetry is placed on the top layer. Stepped excitation slots replace
the ideal delta-gap voltage sources. The feed points for connecting the coaxial
baluns are denoted by the primed numbers. The solder pads on the bottom
layer connect the slotted outer conductors of the coaxial baluns to the top
layer by means of through-hole vias. Dimensions in mm.

These parameters are optimized systematically in such a

way that the antenna ports are matched sufficiently to 50Ω,

yielding the dimensions shown in Fig. 11. The use of stepped

excitation slots provides a broader bandwidth [17], [31]. In

this context, the minimum height above the ground plane is

found to be 12.5mm. While optimizing the antenna element,

the square symmetry must be preserved in order to ensure

the orthogonality of the antenna ports. Although the original

characteristic modes are perturbed by the excitation slots,

the symmetry guarantees that the ports still excite mutually

exclusive sets of modes [9].

In order to connect the feed points within the excitation

slots to the feed network below the ground plane, semi-rigid

coaxial cables are employed [15]. As the excitation slots act

as symmetric terminations, the outer conductors are slotted

in order to serve as baluns [34]. The inner conductor of the

coaxial balun is passed through the substrate and connected to

one side of the excitation slot (see Fig. 11). The slotted outer

conductor is connected to both sides of the excitation slot by

means of through-hole vias from the bottom layer.

B. Feed Network

There are two sets of feed points. The complete feed

network thus consists of two sub-networks: One for the ports 1
and 3, and one for the ports 2, 4, 5, and 6. Hence, it suggests

itself to realize the feed network in multilayer technology.

The layout of the feed network is shown in Fig. 12. The feed

point positions denoted by the primed numbers are dictated by

the antenna element (Fig. 11). Additionally, the size of the feed

network is restricted to an area of 45mm× 45mm so that it

fits entirely below the antenna element.

The chosen layer setup consists of five metal layers.

Layer 1 (top layer) serves as the ground plane for the an-

tenna element (not shown in Fig. 12, see Fig. 10). The feed
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Layer 5 Layer 4 Layer 2 Blind via Through-hole via

Wilkinson power divider

180° hybrid coupler

Antenna element outline

SMD resistor

Port 5

Port 1

Port 3

Port 4

Port 6

1'

2'

12'

11'

10'

9'

8'

7'6'

5'

4'

3'

Port 2

Via hole for
inner conductor
of coaxial balun

Fig. 12. Layout of the feed network. The network layers 2 and 4 as well as
the ground layer 5 and all vias are displayed.

network for the ports 2, 4, 5, and 6 is realized in stripline

technology [35] on layer 2. The feed network for the ports 1
and 3 is realized in stripline technology on layer 4. The two

network layers are separated by the ground layer 3 (not shown

in Fig. 12). Layer 5 (bottom layer) serves as the lower ground

plane. Additionally, the resistors required for the Wilkinson

power dividers are placed on this layer and connected to

layer 4 by means of blind vias. The three ground layers 1,

3, and 5 are linked by means of through-hole vias.

180° hybrid couplers and Wilkinson power dividers [35]

are employed in order to distribute the port signals to the

respective feed points with the required phase relations and de-

couple those ports which share the same feed points (Fig. 12).

The 180° hybrid couplers are realized as ring couplers (rat-

race couplers). 100Ω-SMD resistors of size 0402, which are

mounted on layer 5, are used for the Wilkinson power dividers.

The stripline lengths are adjusted in such a way that no

additional phase differences are added.

The antenna ports themselves are realized as surface-

mount SMA connectors placed on layer 5 (Fig. 10). They

are connected to the respective network layers by means

of through-hole vias. The outer conductors of the coaxial

baluns are soldered to the ground plane on layer 1 (Fig. 10).

The inner conductors are connected to the respective network

layer by means of through-hole vias. All coaxial-to-stripline

transitions are designed to minimize signal reflections. For the

measurements and the final simulations, a finite square ground

plane of dimensions 90mm× 90mm is realized (Fig. 10).

C. Simulation and Measurement Results

The measured and simulated S-parameters of the six-port

multimode antenna are shown in Fig. 13. The antenna ports

(a) (b)

(c) (d)

(e) (f)

u = 1

u = 4

u = 2

u = 5

u = 3

u = 6

Measurement

Simulation

(g)

Fig. 13. Measured and simulated S-parameters Suv (absolute values) from
the v-th port to the u-th port of the fabricated multimode antenna. (a) Port 1
active (v = 1). (b) Port 2 active (v = 2). (c) Port 3 active (v = 3). (d) Port 4
active (v = 4). (e) Port 5 active (v = 5). (f) Port 6 active (v = 6). (g) Legend.

are sufficiently matched to 50Ω (|Suu| ≤ −10 dB) and suf-

ficiently decoupled (|Suv| ≤ −20 dB) over almost the entire

frequency range of interest. Deviations occur towards the

limits of the frequency range which can be attributed to the

fact that the feed network consists of narrowband components.

The measured and simulated realized gains of the far field

radiation patterns excited by the six antenna ports at the center

frequency are shown in Fig. 14. It is evident that the fabricated

prototype reproduces the radiation patterns predicted by the

simulation model very well. A more detailed analysis of the

radiation patterns is not conducted here as the port correlation

is of more importance.

The inspection of the ECC in Fig. 15 computed from the

far field radiation patterns confirms that the antenna ports are

only weakly correlated. The maximum correlation coefficient

is approximately 0.05. From a practical point of view, the

antenna ports can thus be termed uncorrelated. Turning back to

Fig. 14, it is deduced that the antenna ports offer a combination

of pattern and polarization diversity, as intended.
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(a) ϕ = 0°, ϕ = 90° (b) θ = 90° (c) ϕ = 0°, ϕ = 90° (d) θ = 90°

(e) ϕ = 0°, ϕ = 90° (f) θ = 90° (g) ϕ = 0°, ϕ = 90° (h) θ = 90°

(i) ϕ = 0°, ϕ = 90° (j) θ = 90° (k) ϕ = 0°, ϕ = 90° (l) θ = 90°

θ-component φ-component Measurement Simulationφ = 0° φ = 90° φ = 0° φ = 90°

(m)

Fig. 14. Measured and simulated realized gains of the fabricated six-port multimode antenna at 7.25GHz in xz-plane (ϕ = 0°), yz-plane (ϕ = 90°),
and xy-plane (θ = 90°) with respect to the coordinate system in Fig. 10. All plots are limited to the maximum realized gain of the respective port and display
a dynamic range of 30dB. (a)–(b) Port 1. (c)–(d) Port 2. (e)–(f) Port 3. (g)–(h) Port 4. (i)–(j) Port 5. (k)–(l) Port 6. (m) Legend.

The total efficiencies [34] of the fabricated multimode

antenna computed from the measured realized gains are listed

in Table III. The feed network is identified as the principal

cause for dielectric and conduction losses.

V. CONCLUSION

A systematic port construction procedure for arbitrary sym-

metric multimode antennas is presented. It is based on the

projection operators from group theory. The optimal orthog-

onal port configurations are thus solely determined by the

symmetry of an antenna. In particular, they are independent

of the electrical size and hence independent of frequency.

In addition, the proposed procedure is a completely an-

alytical method. No electromagnetic simulations or modal

TABLE III
TOTAL EFFICIENCIES OF THE FABRICATED SIX-PORT MULTIMODE

ANTENNA COMPUTED FROM MEASURED REALIZED GAINS AT 7.25GHz.

Antenna port 1 2 3 4 5 6

Total efficiency (%) 62.3 50.5 63.3 44.0 51.1 52.8

analyses are required. Although fundamentally rooted in the

theory of symmetry, it has direct practical consequences for

a successful multimode antenna design. As the optimal port

configurations are known a priori, different suitable antenna

geometries can be compared with respect to their port potential

and the estimated implementation effort.

In this regard, the feed network is identified as the principal
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(a) (b)

Fig. 15. Envelope correlation coefficients (ECC) of the fabricated six-port
multimode antenna at 7.25GHz. (a) Computed from simulated radiation
patterns. (b) Computed from measured radiation patterns.

source of complexity for multimode antenna design. Although

antenna geometries with a higher symmetry order offer more

orthogonal antenna ports, the complexity of the feed network

grows as well. This assessment is corroborated by the fab-

ricated prototype, where the feed network adds complexity

due to a potentially challenging layout and the introduction

of bandwidth limitations, coupling, and losses. Nevertheless,

this complexity can now be estimated a priori thanks to the

knowledge about the optimal port configurations.

The practical applicability of the proposed design method

is confirmed by the fabricated prototype. Starting with the

optimal port configurations derived analytically from the sym-

metry of a square plate, a complete six-port multimode antenna

is realized whose ports are sufficiently matched, decoupled,

and decorrelated over a reasonable bandwidth.

APPENDIX A

ANALYTICAL COMPUTATIONS

This appendix provides details about the computations

conducted throughout this paper. It is emphasized that all

computations can be performed analytically.

In order to employ the transformation operators P (T ) ac-

cording to (1), which are required for the projection operators,

the orthogonal rotation matrices R(T ) are needed:

R(T ) =

(

R11(T ) R12(T )
R21(T ) R22(T )

)

, R
−1(T ) = R

T(T ). (6)

For a rotation by Φ about an arbitrary axis through the

coordinate origin whose direction is denoted by the unit

vector n = (nx, ny, nz)
T, the elements of (6) are [28]:

R11(Φ) = n2
x(1− cosΦ) + cosΦ, (7a)

R12(Φ) = nxny(1− cosΦ) + nz sinΦ, (7b)

R21(Φ) = nynx(1− cosΦ)− nz sinΦ, (7c)

R22(Φ) = n2
y(1− cosΦ) + cosΦ. (7d)

As an example, the rotation matrices of the symmetry group

of the equilateral triangular plate are listed in Table IV.

These are now used to compute the transformation of

the impressed electric field strength Ei(r) of the initial port

configuration given in (4) by means of (1):

P (T )Ei(x, y) = R(T )Ei

(

R
T(T )r

)

(8)

=

(

R11(T ) R12(T )
R21(T ) R22(T )

)

Ei

(

(

R11(T ) R21(T )
R12(T ) R22(T )

)(

x
y

)

)

.

This equation states that in (4) the x-coordinate is replaced

by R11(T )x+R21(T )y and the y-coordinate is replaced

by R12(T )x+R22(T )y and the resulting vector-valued func-

tion is left-multiplied by R(T ). The results for the six sym-

metry operations of the equilateral triangular plate are given

in (9), which correspond to the transformed delta-gap voltage

sources as depicted in Fig. 4.

These results can now be applied directly to the computation

of the optimal port configurations:

P(1)
11 Ei(x, y) =

1

6

(

P (E) + P (C3z) + P (C2
3z) (10a)

+ P (C2x) + P (C2A) + P (C2B)
)

Ei(x, y),

P(2)
11 Ei(x, y) =

1

6

(

P (E) + P (C3z) + P (C2
3z) (10b)

− P (C2x)− P (C2A)− P (C2B)
)

Ei(x, y),

P(3)
11 Ei(x, y) =

1

3

(

P (E)− 1

2
P (C3z)−

1

2
P (C2

3z) (10c)

+ P (C2x)−
1

2
P (C2A)−

1

2
P (C2B)

)

Ei(x, y),

P(3)
12 Ei(x, y) =

1

3

(

√
3

2
P (C3z)−

√
3

2
P (C2

3z) (10d)

+

√
3

2
P (C2A)−

√
3

2
P (C2B)

)

Ei(x, y),

P(3)
21 Ei(x, y) =

1

3

(

−
√
3

2
P (C3z) +

√
3

2
P (C2

3z) (10e)

+

√
3

2
P (C2A)−

√
3

2
P (C2B)

)

Ei(x, y),

P(3)
22 Ei(x, y) =

1

3

(

P (E)− 1

2
P (C3z)−

1

2
P (C2

3z) (10f)

− P (C2x) +
1

2
P (C2A) +

1

2
P (C2B)

)

Ei(x, y).

The optimal port configurations are simply weighted sums of

the transformed delta-gap voltage sources. The computations

with Ei,2 (5) can be performed in the same way (cf. Fig. 6).

The analytical computations described in this appendix are

applicable to arbitrary point groups and were also used to

derive the results presented in section III.
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