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Abstract—The design of multi-port antennas for MIMO ap-
plications utilizing characteristic modes is investigated. For good
MIMO performance, uncorrelated antenna ports are generally
required. In order to analyze the port correlation, symmetry
analysis based on group theory and matrix representations is
applied to the theory of characteristic modes. The characteristic
surface current densities act as basis functions of the irreducible
representations of the symmetry group of the antenna. Current
densities belonging to different representations or belonging to
different rows of the same representation are orthogonal to
each other and can thus be excited separately. Therefore, an
upper bound for the number of uncorrelated antenna ports
can be derived for a given antenna structure based on the
symmetry analysis of the characteristic modes. Furthermore,
design guidelines on which antenna geometry to choose in order
to realize a given number of uncorrelated antenna ports and on
how to implement these ports can be deduced. The concept is
illustrated by means of examples.

Index Terms—Antenna theory, group theory, characteristic
modes, multiple-input multiple-output (MIMO), multi-mode an-
tenna, symmetry.

I. INTRODUCTION

THE concept of multi-mode antennas based on the theory

of characteristic modes [1]–[3] has proved to be a promis-

ing approach in order to enable multiple-input multiple-output

(MIMO) techniques in spatially restricted environments. With

this concept, a multi-port antenna can be created on a single

antenna structure, thereby optimally utilizing the given space.

The numerous examples reported in literature include the

design of multi-port mobile terminal antennas [4]–[7] as well

as base station antennas [8], [9].

The reason that characteristic modes are most suitable for

MIMO applications is rooted in their orthogonality properties.

These state that the characteristic far fields are orthogonal

to each other [2], offering pattern and polarization diversity.

Therefore, the design of multi-mode antennas aims at exciting

different sets of characteristic modes with different antenna

ports. This way, uncorrelated ports are realized on a single

antenna structure.

Regarding the excitation of characteristic modes, the follow-

ing nomenclature is employed: A set of characteristic modes

is said to be excited if the total excited current density is a
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weighted sum of the corresponding modal current densities

alone. A single mode is said to be excited if its modal current

density is part of this weighted sum.

In recent publications, MIMO antenna designs with up to

four ports realized by means of characteristic mode analysis

can be found [4]–[10]. The antenna ports are typically defined

by inspecting the characteristic surface current densities and/or

the characteristic near fields [11]. For example, in [9] a multi-

mode antenna with four ports was designed based on the

characteristic mode analysis of a square plate. Excitation slots

are placed where maxima of the characteristic surface current

densities occur.

The question arises whether even more antenna ports can

be implemented if more characteristic modes are taken into

account. As proposed in [12], [13], this can prove useful

for future techniques such as massive MIMO. In [14], the

authors showed that a typical smart phone chassis can offer a

large number of modes, depending on the operating frequency.

However, it was also shown that the number of uncorrelated

antenna ports, which can be realized based on characteristic

mode analysis, is apparently limited and that this limitation is

related to the symmetry of the underlying antenna structure.

Furthermore, it was found that the port definition by simply

inspecting the characteristic surface current densities becomes

rather cumbersome if a large number of characteristic modes is

significant. Nevertheless, the optimized port definition in [14]

seems to be related to the symmetry of the antenna as well.

These observations raise the fundamental questions how the

symmetry of an antenna affects its characteristic modes and

whether there is an upper bound for the number of uncorrelated

antenna ports. At this point, it is noteworthy that the designs

presented in [4]–[10] all originate from symmetric structures.

In particular, the importance and the advantages of symmetry

for designing multi-mode antennas are explicitly recognized

in [4], [8], [10] as well as in [15], [16].

Due to the questions raised above, it is purposeful to get a

fundamental understanding of how the characteristic modes

are affected by the symmetry of an antenna in order to

enable a systematic design of multi-mode antennas with a

high number of uncorrelated antenna ports. Symmetry analysis

was introduced to the theory of characteristic modes in [17].

The aim was to improve the characteristic mode computation

of symmetric structures by simplifying the impedance matrix

based on symmetry considerations. As the underlying math-

ematical tools, group theory and matrix representations were

applied to the theory of characteristic modes. More recently,
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these mathematical methods were used in order to understand

crossing avoidances occurring during eigenvalue tracking of

characteristic modes [18], [19].

Inspired by these works, this paper aims at gaining fun-

damental insight into the influence of a structure’s symmetry

on its characteristic modes. In particular, the consequences of

symmetry on the selective excitation of characteristic modes

are investigated. It will be shown that, by applying symmetry

analysis, the number of feasible uncorrelated antenna ports

can be predicted. Furthermore, instructions on what antenna

geometry to choose and how to implement the feed network

can be derived.

To this end, first the mathematical description of symmetry

by means of group theory and matrix representations is intro-

duced in section II. These tools are then applied to the theory

of characteristic modes in section III. Based on the presented

theory, in section IV the selective excitation of characteristic

modes for MIMO applications is discussed. The theoretical

findings are illustrated by numerical examples in section V.

The paper concludes with a summary and a discussion in

section VI.

II. MATHEMATICAL DESCRIPTION OF SYMMETRY

Intuitively, a symmetry operation is a transformation that

maps a geometric object onto itself, i.e. it leaves the object in-

variant. Symmetry operations can mathematically be described

as coordinate transformations, e.g. rotations or reflections. The

symmetry operations that leave a specific object invariant form

a mathematical group, the symmetry group of the object [20].

A. Group Theory

Most symmetric objects encountered in antenna engineering

have a finite number of symmetry operations. The correspond-

ing symmetry group is said to be finite and the number of

group elements is called its order. One group element is always

the unit element, representing the identical transformation.

The other elements are the symmetry operations. There is a

group multiplication which for symmetry groups describes the

execution of symmetry operations in succession. The multi-

plication is associative, but not generally commutative. Every

multiplication of group elements yields again an element of

the group. For each element there is an inverse element so that

the multiplication yields the unit element [21].

As an example, the infinitely thin square plate in Fig. 1

is considered. Its symmetry group is D4 (Schoenfliess no-

tation [22]). In addition to the unit element E, it consists

of three rotations about the z-axis (principal rotation axis):

By 90 ° (C4z), by −90 ° (C−1
4z ), and by 180 ° (C2z). Addition-

ally, there are four rotations by 180 ° about axes perpendicular

to the z-axis: The x-axis (C2x), the y-axis (C2y), the diago-

nal a (C2a), and the diagonal b (C2b) [22]. The eight group

elements are listed in Table I.

Symmetry groups that leave one point of the coordi-

nate system invariant (usually the origin) are called point

groups. The symmetry of various antenna types can be de-

scribed with point groups, e.g. dipole and patch antennas.

The symmetry operations that can be elements of a point

x

y

40 mm

4
0
 m

m

a
b

Fig. 1. Square plate and coordinate system.

TABLE I
GROUP ELEMENTS, ROTATION MATRICES, AND TRANSFORMATION

OPERATORS OF THE SYMMETRY GROUP D4 OF A SQUARE PLATE

T R (T ) P (T ) f(r)

E







1 0 0

0 1 0

0 0 1













fx(x, y, z)

fy(x, y, z)

fz(x, y, z)







C4z







0 1 0

−1 0 0

0 0 1













fy(−y, x, z)

−fx(−y, x, z)

fz(−y, x, z)







C−1
4z







0 −1 0

1 0 0

0 0 1













−fy(y,−x, z)

fx(y,−x, z)

fz(y,−x, z)







C2z







−1 0 0

0 −1 0

0 0 1













−fx(−x,−y, z)

−fy(−x,−y, z)

fz(−x,−y, z)







C2x







1 0 0

0 −1 0

0 0 −1













fx(x,−y,−z)

−fy(x,−y,−z)

−fz(x,−y,−z)







C2y







−1 0 0

0 1 0

0 0 −1













−fx(−x, y,−z)

fy(−x, y,−z)

−fz(−x, y,−z)







C2a







0 1 0

1 0 0

0 0 −1













fy(y, x,−z)

fx(y, x,−z)

−fz(y, x,−z)







C2b







0 −1 0

−1 0 0

0 0 −1













−fy(−y,−x,−z)

−fx(−y,−x,−z)

−fz(−y,−x,−z)







group are proper rotations and improper rotations (inversion,

reflections, and rotoreflections) [22]. In three-dimensional

Euclidean space, these operations can be expressed by or-

thogonal transformation matrices R(T ) that transform the

original coordinates r = (x, y, z)T into the transformed

coordinates r
′ = (x′, y′, z′)T [20]:

r
′ = R (T ) r, (1)

where T is an element of the symmetry group. The symmetry

group D4 of the square consists of only proper rotations.

The corresponding rotation matrices are listed in Table I. For

example, the rotation by 180 ° about the z-axis (C2z) leaves

the z-axis invariant, but inverts the x- and y-axis. In the new

coordinates, the object looks exactly the same as in the original

coordinates. It should be noted that the rotation matrices form
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a group themselves, which is isomorphic to the symmetry

group.

B. Transformation Operators

Up to this point, the transformation of the coordinate

system due to symmetry operations has been described. When

working with characteristic modes, current densities on the

surface of an antenna structure are typically of particular

interest. It is therefore important to know how a vector-

valued function f (r) = (fx (r) , fy (r) , fz (r))
T

defined in

a given coordinate system is affected by a transformation

of the coordinate system due to a symmetry operation. This

is accomplished by transformation operators [20]. The trans-

formed function f
′ can be expressed in terms of the original

coordinates using the transformation matrix R(T ):

f
′ (r) = P (T ) f (r) = Rf

(

R
−1 (T ) r

)

. (2)

P (T ) is called the transformation operator of element T

operating on f . It should be emphasized that these operators

directly operate on functions instead of coordinates [23]. The

transformation operators of the square are included in Table I.

They explicitly describe the rotation of an arbitrary function

due to the symmetry operations in the given coordinate system.

As an example, for the rotation by 180 ° about the z-axis (C2z)

the x- and y-components of the vector-valued function f are

inverted, whereas the z-component remains invariant. Like-

wise, the x- and y-dependencies are inverted, whereas the z-

dependency remains invariant.

C. Basis Functions and Matrix Representations

For every symmetry group there exist special sets of linearly

independent (vector-valued) functions ψ that transform into

linear combinations of each other when operated on by the

transformation operators [23]:

P (T )ψ(p)
n (r) =

dp
∑

m=1

Γ(p)
mn (T )ψ

(p)
m (r) , n = 1, 2, . . . , dp.

(3)

The function ψ
(p)
n is called the n-th basis function of the p-th

dp-dimensional representation of the symmetry group. The

effect of the symmetry operation T on ψ
(p)
n is equal to a linear

combination of the dp basis functions ψ
(p)
1 to ψ

(p)
dp

. The weigh-

ting coefficients Γ
(p)
mn(T ) are elements of a dp-dimensional

square matrix Γ
(p)(T ). (It has to be highlighted here that n

is the row index [20].) Equation (3) describes the effect of

a transformation operator on a basis function and the basis

function is said to transform according to the n-th row of the

p-th representation.

The matrix Γ
(p)(T ) is called the representation matrix

of the p-th representation for the symmetry operation T . A

dp-dimensional representation is a group homomorphic to the

symmetry group that assigns a square matrix of dimension dp
to each element of the symmetry group [23]. For a given group,

there is generally an infinite number of matrix representations.

However, for a finite group there is a finite number of so-called

irreducible representations of minimal dimension from which

all other representations can be derived [20]. The irreducible

representations of a finite group are unique up to a similarity

transformation. For these reasons, it is purposeful to work only

with the irreducible representations.

The representation matrices can usually not be found in

the literature. Instead, character tables are given (e.g. [22]).

The character χ(p) (T ) of a representation is the trace of the

representation matrix [20]:

χ(p) (T ) = tr
(

Γ
(p)(T )

)

. (4)

For one-dimensional representations, the characters are the

representation matrices.

The symmetry group of the square plate has five irre-

ducible representations. The representation matrices are given

in Table II [20]. They describe how the basis functions

transform under the symmetry operations. The first four re-

presentations are one-dimensional and their matrices are thus

equal to the characters. The fifth representation, however, is

two-dimensional and consists therefore of two-dimensional

matrices. This has the consequence that a pair of basis

functions belongs to this representation. An example for a

basis function transforming according to the first row of the

fifth representation is ψ
(5)
1 (x, y, z) = (|x|, 0, 0)T . Its partner

function is ψ
(5)
2 (x, y, z) = (0, |y|, 0)T , which can be checked

by manual inspection.

The basis functions of the irreducible representations have

very important orthogonality properties [20]:
〈

ψ(p)
m (r) ,ψ(q)

n (r)
〉

= 0, (5)

unless p = q and m = n, where 〈·〉 denotes an inner

product of L2. This equation means that basis functions

belonging to different irreducible representations and basis

functions belonging to different rows of the same irreducible

representation are orthogonal to each other. This orthogonality

theorem is of great importance for the selective excitation of

characteristic modes, as will be shown in the next sections.

III. SYMMETRY OF CHARACTERISTIC MODES

In this section, the connection of the symmetry analysis

to the theory of characteristic modes is established. The

theory of characteristic modes for perfectly electrically con-

ducting (PEC) structures is based on the following eigenvalue

problem [2]:

X (Jn (r)) = λnR (Jn (r)) , (6)

where λn denotes the n-th eigenvalue and Jn the n-th char-

acteristic surface current density (eigenfunction). The opera-

tors R and X are the real and imaginary part, respectively, of

the impedance operator Z derived from the electric field inte-

gral equation (EFIE) and the electric field boundary condition

for perfect electric conductors.

In [17], it is demonstrated that the impedance operator is

invariant under the symmetry operations of the underlying

PEC structure. Applying a transformation operator of the

symmetry group to the impedance operator yields

P (T )Z (Jn (r)) = Z (P (T )Jn (r)) = Z (J′
n (r)) . (7)
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TABLE II
MATRIX REPRESENTATIONS OF SYMMETRY GROUP D4

D4 E C4z C−1
4z C2z C2x C2y C2a C2b

Γ(1) 1 1 1 1 1 1 1 1

Γ(2) 1 1 1 1 −1 −1 −1 −1

Γ(3) 1 −1 −1 1 1 1 −1 −1

Γ(4) 1 −1 −1 1 −1 −1 1 1

Γ(5)

(

1 0

0 1

) (

0 −1

1 0

) (

0 1

−1 0

) (

−1 0

0 −1

) (

1 0

0 −1

) (

−1 0

0 1

) (

0 1

1 0

) (

0 −1

−1 0

)

The transformation operator is said to commute with the

impedance operator [23]. This result is now applied to (6),

yielding [17]

X (P (T )Jn (r)) = λnR (P (T )Jn (r)) . (8)

This means that all transformed surface current densities

(including the identity transformation) are eigenfunctions with

the same eigenvalue.

Any eigenfunction of a d-fold degenerate eigenvalue can be

expressed as a linear combination of d linearly independent

eigenfunctions belonging to that eigenvalue [24]. Thus, a

transformed eigenfunction can be written as

P (T )Jn (r) =

d
∑

m=1

amnJm (r) , n = 1, 2, . . . , d (9)

with the weighting coefficients amn. For example, if λn is

twofold degenerate, then every transformed characteristic sur-

face current density can be expressed as a linear combination

of the two characteristic surface current densities belonging to

this eigenvalue solved from (6), which are linearly independent

by definition [24]. In this case, the coefficients amn can be

collected into a two-dimensional square matrix.

As a matter of fact, this defines a representation (cf. (3)).

The eigenfunctions (characteristic surface current densities)

form basis functions of the irreducible representations of the

symmetry group. A detailed proof can be found in [20] or [25].

This connection between the theory of characteristic modes

and the theory of symmetry will be made use of in the

following section.

IV. SELECTIVE EXCITATION OF CHARACTERISTIC MODES

In the previous section, it was shown that the characteristic

surface current densities act as basis functions of the irre-

ducible representations of the symmetry group which leaves

the impedance operator invariant. The orthogonality properties

of basis functions (5) will now be applied to the excitation of

characteristic modes.

An arbitrary surface current density J(r) on a PEC-structure

can be decomposed into a weighted sum of its characteristic

surface current densities [2]:

J (r) =
∑

n

αnJn (r) =
〈Jn (r) ,Einc (r)〉

1 + jλn

Jn (r) , (10)

where αn is called the modal weighting coefficient. Its nu-

merator is called the modal excitation coefficient, which takes

into account the excitation by an incident electric field Einc,

which may for instance be impressed locally by a concentrated

antenna port. The inner product is now explicitly defined as

〈Jn (r) ,Einc (r)〉 =
‹

S′

Jn (r) ·Einc (r) dS
′, (11)

where the integration is taken over the surface S′ of the

underlying PEC structure.

From (10) it is deduced that a necessary criterion for a

characteristic mode to be efficiently excited is that its eigen-

value must be close to zero. Additionally, the modal excitation

coefficient needs to be maximized. This is accomplished if

the incident electric field is collinear to the characteristic

surface current density. By contrast, if the two functions were

orthogonal to each other, the characteristic mode would not

be excited at all.

In the design of multi-mode antennas for MIMO appli-

cations, it would be the ideal case to design an excitation

that efficiently excites exactly one mode and is orthogonal

to all other modes. However, in [14] it was shown that this

may generally not be possible as certain characteristic surface

current densities may be correlated. The characteristic current

correlation coefficient ρmn measures the correlation between

the m-th and the n-th characteristic surface current density:

ρmn =
〈Jm (r) ,Jn (r)〉
‖Jm (r)‖ ‖Jn (r)‖

, (12)

where ‖·‖ denotes the norm induced by the definition of the

inner product in (11). The correlation is a measure for the

similarity of surface current densities, especially regarding

the positions of local maxima and nulls, which are typical

locations for placing excitation elements [11]. This has the

consequence that, if the surface current densities of two modes

are correlated, an antenna port that is intended to excite the

first mode will potentially also excite the second one. A second

antenna port that is intended to excite the second mode will

in principle also excite the first mode so that both antenna

ports will potentially excite the same modes. Therefore, both

ports will be correlated which is to be avoided for MIMO

applications [26].

The port correlation is measured by means of the envelope

correlation coefficients (ECC) [27]:

ECCuv =
1

2Z0

‚

S
Eu ·E∗

vdS
√

Prad,u

√

Prad,v

, (13)

where the integration is taken over a closed surface S in the far

field encompassing the antenna. Eu and Ev denote the total

radiated electric far fields excited by the u-th and v-th antenna
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port, respectively, Z0 denotes the wave impedance of free

space, Prad,u;v the radiated power of the u-th and v-th port,

respectively, and ∗ the complex conjugate. The radiated far

fields can be expressed by the characteristic far fields and the

modal weighting coefficients [2]:

ECCuv =
1

2Z0

‚

S

∑

m αm,uEm ·∑n α
∗
n,vE

∗
ndS

√

Prad,u

√

Prad,v

. (14)

Due to the orthogonality of the characteristic far fields [2],

this reduces to

ECCuv =

∑

n αn,uα
∗
n,v

1
2Z0

‚

S
‖En‖2 dS

√

Prad,u

√

Prad,v

. (15)

If the characteristic modes are normalized to radiate unit

power [2], this can be simplified further to

ECCuv =

∑

n αn,uα
∗
n,v

√

Prad,u

√

Prad,v

=
∑

n

bn,ub
∗
n,v, (16)

where bn,u;v are the normalized modal weighting coefficients

of the u-th and v-th antenna port, respectively, as defined

in [27]:

bn =
αn√
Prad

, (17)

which can also be interpreted as the correlation coefficients

between the total radiated far field excited by a port and the

modal far fields.

Equation (16) demonstrates the fact that antenna ports are

uncorrelated if they excite mutually exclusive sets of charac-

teristic modes, i.e. bn,u = 0 if bn,v 6= 0 and vice versa. The

current correlation introduced in (12) is a qualitative indicator

whether two characteristic modes can be excited separately.

As the characteristic surface current densities are basis

functions of the irreducible representations of the symmetry

group of the antenna structure, the current correlation de-

fined in (12) is dictated by the orthogonality theorem in (5).

Therefore, characteristic surface current densities of different

representations and characteristic surface current densities of

different rows of the same representation are orthogonal to

each other. They may thus be excited separately and the

number of feasible uncorrelated antenna ports is apparently

governed by the number and dimensions of the irreducible

representations, i.e. there is an upper bound for realizing

uncorrelated antenna ports on multi-mode antennas.

Furthermore, the modal excitation coefficient in (10) indi-

cates that, in order to excite the characteristic modes of a

specific irreducible representation, the incident electric field,

too, should be a basis function of that representation (symmet-

ric excitation). In this case, the modal excitation coefficient

has the form of (5) so that the excitation cannot excite

modes belonging to other representations or other rows of

the same representation. Conversely, if the incident electric

field is applied asymmetrically, a mixture of characteristic

modes belonging to different representations will be excited,

reducing the number of uncorrelated antenna ports that can be

realized. Based on these observations, instructions for creating

the maximum number of uncorrelated antenna ports can be

derived from the symmetry analysis.
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Fig. 2. Modal significances of square PEC plate at 7.25 GHz.

V. NUMERICAL EXAMPLES

In this section, numerical examples will be discussed in

order to illustrate the fundamental properties and relationships

introduced in the previous section and demonstrate the use-

fulness of the presented theory for the design of multi-mode

antennas.

The characteristic modes are computed [3] using an in-

house method of moments software which is implemented in

MATLAB. It is based on a modified version of the code pre-

sented in [28] for the method of moments, built-in MATLAB

functions for solving the generalized eigenvalue problem as

well as advanced tracking algorithms [29]. In particular, for all

simulation models a symmetric mesh is used that is invariant

under the symmetry operations of the respective structure

(cf. [19]). All modal analyses are conducted at 7.25 GHz.

(It is emphasized that the symmetry analysis is frequency-

independent.)

A. Square Plate

In order to illustrate the basic procedure of the symmetry

analysis and its application to the excitation of character-

istic modes, an infinitely thin square PEC plate of dimen-

sions 40 mm×40 mm is analyzed (see Fig. 1). Its symmetry

group is D4, which has already been introduced in section II.

The corresponding irreducible representations are given

in Table II. There are four one-dimensional and one two-

dimensional representations. According to the previous sec-

tions, the characteristic surface current densities that act as

basis functions of different representations and those which

form a pair of basis functions of the two-dimensional repre-

sentation are orthogonal to each other. This results in a total of

six mutually orthogonal sets of characteristic modes and thus

six uncorrelated antenna ports are expected to be feasible.

The two-dimensional representation yields another impor-

tant property of the characteristic modes: Two modes that

form a pair of basis functions for this representation are

degenerate, i.e. they have the same eigenvalue independent

of frequency [17].

To verify these statements, a modal analysis of the square

plate is now conducted. For this purpose, the square plate is

discretized into a symmetric mesh consisting of 2472 triangles.

This relatively fine mesh is chosen in order to get detailed

current plots. It should be noted that the results derived in the

following paragraphs are basically independent of the mesh
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Fig. 3. Normalized surface current densities of significant characteristic
modes of square PEC plate at 7.25 GHz with principal current directions
denoted by arrows. (a)-(h) Modes 1 to 8. (i) Colorbar.

TABLE III
ASSIGNMENT OF CHARACTERISTIC MODES OF SQUARE PEC PLATE TO

IRREDUCIBLE REPRESENTATIONS OF SYMMETRY GROUP D4

Representation Characteristic modes

Γ(1) 4; 12

Γ(2) 8; 13; 17

Γ(3) 5; 11

Γ(4) 3; 16; 18

Γ(5) 1-2; 6-7; 9-10; 14-15

density as long as the symmetry of the antenna is represented

accordingly and the characteristic modes are calculated accu-

rately.

In the first step, the modal significances [30] as shown

in Fig. 2 are examined. 18 characteristic modes have been

taken into account. Modes with modal significances greater

than 1/
√
2 (eigenvalues between −1 and 1) are considered

significant, i.e. their eigenvalues are close enough to zero so

that they are suitable for excitation. Modes 1 to 8 fulfill this

requirement. Furthermore, the mode pairs 1-2, 6-7, 9-10, and

14-15, respectively, can be recognized as degenerate mode

pairs as they have the same modal significances (eigenvalues).

Due to this, these mode pairs can already be identified as basis

functions of the two-dimensional fifth representation.

In order to assign all characteristic modes to the irreducible

representations, their surface current densities are inspected.

The current densities of the significant modes are displayed in

Fig. 3, where the principal current directions are denoted by

the arrows. Modes 3 (Fig. 3(c)), 4 (Fig. 3(d)), 5 (Fig. 3(e)),

and 8 (Fig. 3(h)) act as basis functions of the different one-
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Fig. 4. Characteristic current correlation of square PEC plate at 7.25 GHz.

dimensional representations of the square plate. This can be

checked by applying all operations of the symmetry group

to the current densities. For example, mode 4 (Fig. 3(d))

is invariant under all symmetry operations (multiplication

with 1) and thus belongs to the first representation. In contrast,

mode 8 (Fig. 3(h)) is invariant under all rotations about the

z-axis, but is inverted for all other rotations (multiplication

with −1) and is therefore a basis function of the second

representation.

The pairs of degenerate modes 1-2 (Fig. 3(a) and (b))

and 6-7 (Fig. 3(f) and (g)) act as basis functions for the two-

dimensional representation, as expected. Their transformations

are described by two-dimensional representation matrices (Ta-

ble II). Modes 1 and 6 transform according to the first row of

the representation and modes 2 and 7 transform according to

the second row (see (3)). For instance, a rotation by 180 ° about

the x-axis (C2x) leaves mode 1 invariant, but inverts mode 2.

In particular, the basis functions transform into each other

for some operations. This is e.g. the case for the rotation (of

the coordinate system) by 90 ° about the z-axis (C4z), where

mode 1 becomes the inverted mode 2 and mode 2 becomes

mode 1. (This is equal to a rotation of the current densities

themselves by −90 °.) The assignment of all 18 characteristic

modes to the representations based on the inspection of the

surface current densities is summarized in Table III.

In the next step, the characteristic current correlation as

defined in (12) is evaluated, which is shown in Fig. 4. It

is clearly visible that current densities belonging to different

irreducible representations are orthogonal to each other. In par-

ticular, the current densities belonging to different rows of the

two-dimensional representation are mutually orthogonal. Thus,

it is confirmed that the characteristic surface current densities

act as basis functions of the irreducible representations and

that they fulfill the orthogonality theorem in (5). Furthermore,

it can be observed that current densities belonging to the same

representation are correlated. The actual value of the correla-

tion coefficient is not defined by the orthogonality theorem

and there may be some cases where it is comparatively small.

Now that the characteristic modes have been sorted accord-

ing to their symmetry properties, excitations for the modes

can be designed based on the symmetry analysis. As stated in

section IV, the excitation has to be designed in such a way
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Fig. 6. Absolute values of normalized modal weighting coefficients of square
PEC plate excited according to Fig. 5 at 7.25 GHz.

that the corresponding incident electric field is a basis function

of the representation the mode which is intended to be excited

belongs to. For example, an excitation that is intended to excite

mode 4, which belongs to the first representation, has to be

invariant under all symmetry operations of the group.

For the analysis of the excitation, voltage sources, imple-

mented as gap sources in the method of moments [28], are

employed. One antenna port consists of several voltage sources

which are placed on the plate and driven in such a way

that they fulfill the symmetry requirements of the respective

representation. One possible port configuration is shown in

Fig. 5. The voltage gap sources are marked by the small black

strips and the directions of the applied voltages (relative phase)

are denoted by arrows. All sources have the same amplitude.

Those sources which belong to the same antenna port have

the same color. In this configuration, some sources are used by

more than one port. As an example, antenna port 1 is intended

to excite mode 4. It consists of eight voltage sources which

are positioned and driven in such a way that it is invariant

under all symmetry operations of the square plate.

In order to evaluate which characteristic modes are excited

by the previously defined antenna ports, the normalized modal

weighting coefficients introduced in (17) are used. The nor-

malized modal weighting coefficients (absolute value) of the

square PEC plate excited according to Fig. 5 are depicted

in Fig. 6. Every port excites a different set of characteristic

modes. Each set only consists of modes belonging to the

same representation or the same row of the two-dimensional

representation, respectively (see Table III). This is due to the

fact that both the incident electric fields impressed by the

ports and the characteristic surface current densities are basis
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Fig. 7. Envelope correlation coefficients (ECC) of square PEC plate excited
according to Fig. 5 at 7.25 GHz.
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Fig. 8. Port configuration of square PEC plate with excitation slots. The feed
points within the slots (black arrows) are labelled by primed numbers.

functions of the irreducible representations of the symmetry

group of the square plate and thus the orthogonality theorem

holds. As a consequence, the antenna ports are uncorrelated

which is confirmed by inspecting the envelope correlation

coefficients in Fig. 7 calculated according to (13).

Furthermore, Fig. 6 reveals that all modes are excited by one

of the six antenna ports, even those which have a compara-

tively small modal significance. This is due to the correlation

of current densities belonging to the same representation. This

has the consequence that there is no further degree of freedom

to realize a seventh uncorrelated antenna port.

This initial example demonstrates the consequences of sym-

metry on the excitation of characteristic modes. The number of

orthogonal sets of characteristic surface current densities and

thus the number of feasible uncorrelated antenna ports is di-

rectly related to the number and dimensions of the irreducible

representations. From the representations, instructions on how

to realize the excitations of the sets of modes can be deduced.

B. Square Plate with Excitation Slots

The question arises whether the symmetry analysis is also

useful if a multi-mode antenna with practical excitations is

considered (see e.g. [11]). To this end, a slot excitation

inspired by [9] is designed for the square plate of the previous

subsection. The optimized design is depicted in Fig. 8 and the

corresponding feed network is shown in Fig. 9.

Although the characteristic modes will in general change

by introducing excitation structures, the symmetry properties
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Fig. 10. Simulated S-parameters of square PEC plate with excitation slots and
feed network. (a) Input reflection coefficients. (b) Transmission coefficients.

of the characteristic surface current densities and hence their

orthogonality are still governed by the symmetry group of the

antenna. From the symmetry analysis it is thus derived that the

symmetry group D4 of the square plate has to be maintained

in order to realize six uncorrelated antenna ports. Therefore,

practical excitations of any sort have to be designed in such a

way that the symmetry of the original structure is preserved.

The excitation slots and the feed points in Fig. 8 fulfill this

requirement. The positions of the slots along the edges of the

plate are adopted from Fig. 5. The antenna ports 1 and 3 as

defined in section V-A use the feed points 1′ to 8′ in Fig. 8,

the antenna ports 2, 4, 5 and 6 use the feed points 9′ to 12′.
The antenna input ports and the feed points within the

excitation slots are connected by means of the feed network

shown in Fig. 9. The port configuration in Fig. 5 is used

as the basis for the design of the feed network. Wilkinson

power dividers and 180 ° hybrid couplers are employed in

order to distribute the input signals from the antenna ports

to the feed points of the plate and control the amplitude and

phase relations at the feed points. The input impedances of the

antenna ports are controlled by the lengths of the excitation

slots and the feed positions within the slots [9].

In order to analyze the complete antenna including the

feed network, a simulation in Empire XPU, which uses the

FDTD-method (finite-difference time-domain), is carried out.

For this purpose, the antenna is modelled according to Fig. 8

as a PEC plate in free space. The feed network is taken into

account by means of a circuit simulation offered by Empire

XPU using ideal Wilkinson power dividers and 180 ° hybrid

couplers according to Fig. 9.

The simulated S-parameters are shown in Fig. 10. The
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Fig. 11. Envelope correlation coefficients (ECC) of square PEC plate with
excitation slots and feed network at 7.25 GHz.

lengths of the excitation slots and the feed positions within

the slots are optimized so that the antenna ports are matched

to 50Ω. For antenna port 3, a quarter-wave impedance

transformer with a characteristic impedance of 70.71Ω is

added at the input to achieve a better impedance match.

At 7.25 GHz, all antenna ports have an input reflection co-

efficient of less than −15 dB (Fig. 10(a)). The transmission

coefficients (Fig. 10(b)) are all well below −70 dB, demon-

strating a high isolation between the antenna ports. As the feed

network is ideal and the antenna is lossless, this port isolation

can be attributed to the fact that the ports excite mutually

orthogonal sets of characteristic modes due to the symmetry

of the antenna. A slight asymmetry due to the cubic mesh in

Empire XPU results in the fact that the isolation is finite.

The analysis of the S-parameters shows that the antenna

ports are decoupled. Now, the envelope correlation coefficients

are calculated according to (13) from the far fields simulated

in Empire XPU. They are shown in Fig. 11 and confirm that

the antenna ports are uncorrelated.

This example underlines that the results of the symmetry

analysis still hold if a modified antenna is considered. In other

words, the symmetry of the complete antenna has to be taken

into account. This has the consequence that excitation elements

have to be designed in such a way that the symmetry group

of the complete antenna is the same as that of the original

structure. From the theory it can be derived that this conclusion

is valid for any type of excitation.

C. Sensitivity Analysis of Square Plate

Another question of practical importance is how sensitive

the antenna ports are to small asymmetries of the antenna,

which may e.g. result from the fabrication process. In order

to analyze this exemplarily, one dimension of the square plate

(Fig. 1) is gradually shortened. This way, the symmetry group

is no longer D4, but D2 of order 4 (rectangular plate) [22].

The effect of this reduction of the symmetry order on the

antenna with the port configuration according to Fig. 5 is

evaluated by means of the envelope correlation coefficients

(ECC), which are shown in Fig. 12 for different dimensions

of the now rectangular plate. It is observed that the ports 1

and 3 and the ports 2 and 4 are correlated if the symmetry

group is reduced. The correlation becomes more pronounced

as the dimension disparity is increased. This is due to the

fact that the one-dimensional irreducible representations 1
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Fig. 12. Sensitivity to asymmetry of envelope correlation coefficients (ECC)
of original square PEC plate excited according to Fig. 5 at 7.25 GHz. One
dimension of the plate is gradually shortened in order to reduce the symmetry
order (rectangle). (a) 40 mm×40 mm. (b) 40 mm×39 mm. (c) 40 mm×37 mm.
(d) 40 mm×30 mm.

and 3 as well as 2 and 4 of the symmetry group of the

square plate respectively collapse into one representation of

the symmetry group of the rectangular plate. Therefore, the

rectangular plate offers only four uncorrelated antenna ports.

In general, a reduction of the symmetry order thus leads to

correlated antenna ports.

However, it is also observed that for small dimension differ-

ences the port correlation is comparatively low and it increases

gradually with increasing dimension disparity. With respect to

the port correlation, there is apparently a smooth transition

from one symmetry group to the other. These observations

give rise to the conclusion that the antenna ports may be

rather insensitive to small asymmetries of the antenna and the

effects of small asymmetries on the port correlation may be

considered negligible for practical designs.

D. Square Cuboid

The previous examples offer a maximum of six uncorrelated

antenna ports. In order to increase the number of uncorrelated

antenna ports, structures with higher symmetry, i.e. whose

symmetry groups have more irreducible representations or

irreducible representations of higher dimension, have to be

used.

As an example with more complex symmetry, a per-

fectly electrically conducting square cuboid with dimen-

sions 60 mm×60 mm×20 mm is now examined (Fig. 13). Its

symmetry group is D4h of order 16. Its first eight elements are

the same as those of symmetry group D4 of the square (proper

rotations, Table I). In addition, the xy-plane acts as a mirror

plane. This results in eight additional group elements which

are the symmetry operations of group D4 followed by the

TABLE IV
CHARACTER TABLE OF SYMMETRY GROUP D4h

D4h E C4z C−1
4z C2z C2x C2y C2a C2b

Γ(1) 1 1 1 1 1 1 1 1

Γ(2) 1 1 1 1 −1 −1 −1 −1

Γ(3) 1 −1 −1 1 1 1 −1 −1

Γ(4) 1 −1 −1 1 −1 −1 1 1

Γ(5) 2 0 0 −2 0 0 0 0

Γ(6) 1 1 1 1 1 1 1 1

Γ(7) 1 1 1 1 −1 −1 −1 −1

Γ(8) 1 −1 −1 1 1 1 −1 −1

Γ(9) 1 −1 −1 1 −1 −1 1 1

Γ(10) 2 0 0 −2 0 0 0 0

D4h σxy S4z S−1
4z I σxz σyz σaz σbz

Γ(1) 1 1 1 1 1 1 1 1

Γ(2) 1 1 1 1 −1 −1 −1 −1

Γ(3) 1 −1 −1 1 1 1 −1 −1

Γ(4) 1 −1 −1 1 −1 −1 1 1

Γ(5) 2 0 0 −2 0 0 0 0

Γ(6)
−1 −1 −1 −1 −1 −1 −1 −1

Γ(7)
−1 −1 −1 −1 1 1 1 1

Γ(8)
−1 1 1 −1 −1 −1 1 1

Γ(9)
−1 1 1 −1 1 1 −1 −1

Γ(10)
−2 0 0 2 0 0 0 0

x

y

60 mm

2
0
 m

m

ab

z

60 mm

Fig. 13. Square cuboid and coordinate system.

reflection through the xy-plane σxy (improper rotations: σ de-

noting a reflection, S a rotoreflection and I the inversion) [22].

The 16 group elements are summarized in Table IV.

The symmetry group D4h has ten irreducible representa-

tions. The corresponding characters are listed in Table IV.

The fifth and the tenth representation are two-dimensional,

which can be derived from the fact that the character for the

identity element E is two for these representations. The two-

dimensional representation matrices are not displayed here for

brevity. They are taken from [20].

The first five representations can also be viewed as ”even”

representations as the characters (or representation matrices)

of the proper rotations and the corresponding improper ro-

tations (resulting from the proper rotations followed by the

reflection through the xy-plane) are the same. In contrast, the

representations 6 to 10 may be called ”odd” as the characters

(or representation matrices) of the improper rotations can be
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Fig. 14. Modal significances of square PEC cuboid at 7.25 GHz.
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Fig. 15. Characteristic current correlation of square PEC cuboid at 7.25 GHz.

calculated from the characters (or representation matrices) of

the proper rotations by multiplying them with −1.

With the symmetry analysis presented in this paper, im-

portant predictions about the characteristic modes of the

square cuboid can already be made at this point. As there

are eight one-dimensional and two two-dimensional represen-

tations, there are twelve sets of characteristic modes. Due

to the orthogonality theorem, characteristic surface current

densities belonging to different sets are orthogonal to each

other. Therefore, twelve uncorrelated antenna ports may be

realized by selectively exciting the modes of the different sets.

This is now verified by means of a modal analysis of the

square cuboid. For this purpose, the cuboid is meshed with

4768 triangles. In Fig. 14, the modal significances of the first

36 modes are displayed. Modes 1 to 18 are considered signif-

icant. The mode pairs 1-2, 4-5, 13-14, 17-18, 20-21, 22-23,

27-28, and 29-30 are found to be degenerate. The inspection

of the current correlation shown in Fig. 15 confirms that there

are twelve sets of orthogonal characteristic surface current

densities, as expected. Consequently, the characteristic modes

can now be sorted into twelve orthogonal sets. However, they

cannot be assigned to the different irreducible representations

of the square cuboid based on this information alone. This can

only be achieved by inspecting the surface current densities,
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Fig. 16. Absolute values of normalized modal weighting coefficients of square
PEC cuboid at 7.25 GHz.

TABLE V
ASSIGNMENT OF CHARACTERISTIC MODES OF SQUARE PEC CUBOID TO

IRREDUCIBLE REPRESENTATIONS OF SYMMETRY GROUP D4h

Port Representation Characteristic modes

1 Γ(1) 10; 34

2 Γ(2) 11; 19

3 Γ(3) 3; 33

4 Γ(4) 12; 16; 35

5-6 Γ(5) 4-5; 13-14; 27-28

7 Γ(6) 8; 15; 24; 36

8 Γ(7) 9; 26; 31

9 Γ(8) 6; 32

10 Γ(9) 7; 25

11-12 Γ(10) 2-1; 18-17; 21-20; 23-22; 30-29

though this step is not even necessary, as will be shown in the

following paragraphs.

It is now purposeful to continue with defining the antenna

ports. As already explained, the symmetry group of the square

cuboid can be viewed as an evolution of the symmetry group of

the square. It is therefore convenient to use the voltage sources

of the square plate (Fig. 5) on the top and bottom face of the

cuboid. The top face is always driven according to Fig. 5.

For the first six antenna ports, the bottom face is also driven

according to Fig. 5, i.e. both faces are excited in phase (”even

excitation”). For ports seven to twelve, the voltage sources on

the bottom plate are driven out of phase, i.e. all arrows in

Fig. 5 have to be rotated by 180 ° (”odd excitation”).

The normalized modal weighting coefficients of the square

cuboid are shown in Fig. 16. Again, each antenna port excites a

different set of characteristic modes. As the ports are designed

as basis functions of the irreducible representations of the

square cuboid, every set only consists of modes belonging to

the same representation or the same row of a two-dimensional

representation (cf. Fig. 15). Based on this, the characteristic

modes can now be assigned to the irreducible representations

without explicitly examining the surface current densities. This

is summarized in Table V.

Since the antenna ports excite orthogonal sets of char-

acteristic modes, they are uncorrelated which is confirmed

by examining the envelope correlation coefficients shown in

Fig. 17. As predicted, twelve uncorrelated antenna ports are
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Fig. 17. Envelope correlation coefficients (ECC) of square PEC cuboid
at 7.25 GHz.

realized. As all modes are already in use, there is no further

degree of freedom to realize further uncorrelated antenna ports.

It should be noted that the weighting coefficients of some

significant modes are comparatively low (e.g. modes 1 and 2

in Fig. 16). This is due to the actual port implementation and

may have to be optimized depending on the design goals.

Nevertheless, the symmetry requirements have always to be

fulfilled in order to ensure decorrelation of the antenna ports.

This example highlights that the symmetry analysis yields a

lot of insight into the analysis and the excitation of characteris-

tic modes. Although the geometric structure is rather complex

and there are many significant modes, predictions about the

properties of the characteristic modes and how to excite them

can be made without even conducting a modal analysis.

VI. CONCLUSION AND DISCUSSION

Symmetry analysis based on group theory and matrix repre-

sentations is applied to the theory of characteristic modes in

order to derive rules for the selective excitation of character-

istic modes on perfectly electrically conducting antenna struc-

tures. The characteristic surface current densities act as basis

functions of the irreducible representations of the symmetry

group of the antenna. Those current densities belonging to

different representations and those belonging to different rows

of a multidimensional representation are orthogonal to each

other and can thus be excited separately. Therefore, the number

of feasible uncorrelated antenna ports can be predicted from

the number and dimensions of the irreducible representations.

In other words, there is an upper bound for the number

of perfectly uncorrelated antenna ports of a given antenna

geometry. In addition, the representation matrices reveal where

to place feed points and how to drive them.

In Table VI, different symmetric antenna geometries are

listed with their corresponding symmetry groups. The number

of uncorrelated antenna ports is calculated from the number

and dimensions of the irreducible representations. As an ex-

ample, a cube has four one-dimensional, two two-dimensional

and four three-dimensional irreducible representations [22].

The number of uncorrelated antenna ports can thus be calcu-

lated as 4·1+2·2+4·3 = 20. As a general guideline, Table VI

shows that antenna structures with high symmetry, i.e. whose

symmetry groups have a lot of irreducible representations or

representations of higher order, are very suitable for designing

multi-port antennas.

It has to be kept in mind that a sufficient number of

significant characteristic modes has to be available, which is

related to the electrical size of the antenna. It would thus be

interesting to know whether there is an optimum antenna size

if the maximum number of uncorrelated antenna ports is to

be realized. For this purpose, it might be suitable to analyze

geometries with circular symmetry, e.g. a circular disk (which

can be considered the generalization of the square plate). Al-

though such geometries have symmetry groups with an infinite

number of elements, the basic properties introduced in this

paper, in particular the orthogonality theorem for characteristic

surface current densities, are still valid [20]. However, there

is now an infinite number of irreducible representations [23].

This fact might be exploited to find some criteria relating the

number of antenna ports to the electrical size of the antenna,

which will be the topic of future research.

Another limiting factor for the realization of uncorrelated

antenna ports is the feed network. The examples presented

in this paper indicate that, in order for the antenna ports to

act as basis functions of the representations, many feed points

may have to be driven simultaneously. This may require a

relatively complex feed network per port. For practical multi-

port antenna designs it is therefore expected that there will be a

compromise between the number of feasible antenna ports and

the complexity of the feed network, depending on application

and cost.

In this context, it has to be kept in mind that a practi-

cal antenna design will have some asymmetry (e.g. due to

fabrication) and the feed network will have finite isolation.

From the sensitivity analysis performed in this work, it is

deduced that small asymmetries may only slightly affect the

port correlation. (Also cf. the design in [9], which basically

fulfills the symmetry requirements, but has some asymme-

tries introduced due to practical considerations.) In order to

quantify these observations, the effects of asymmetry will

be further investigated in upcoming work. Nevertheless, a

great advantage of the proposed design method is that, as the

antenna element itself is designed to have uncorrelated ports,

correlation introduced due to imperfections in the fabrication

process or in the feed and matching network are not as

detrimental as in antenna designs that allow for a certain

amount of port correlation from the start.

Another outcome of the numerical analyses is a relatively

low correlation between certain characteristic surface current

densities, though they are not perfectly orthogonal to each

other according to the theory (see Fig. 4 and 15). It was also

noted that the modal weighting coefficients of some significant

characteristic modes may be comparatively low, depending on

the actual configuration of the excitation (see Fig. 16). Based

on these observations, the question arises whether even more

antenna ports can be created if a certain envelope correlation

is permitted. In this case, a possible approach would be to first

design the (perfectly) uncorrelated antenna ports based on the

symmetry of the antenna. After that, a certain threshold for the

envelope correlation may be defined and more antenna ports
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TABLE VI
SYMMETRY GROUP, NUMBER OF IRREDUCIBLE REPRESENTATIONS, AND NUMBER OF FEASIBLE UNCORRELATED ANTENNA PORTS FOR DIFFERENT

SYMMETRIC ANTENNA GEOMETRIES

Antenna geometry
Symmetry

group

No. of irreducible representations No. of uncor-
related ports1-dimensional 2-dimensional 3-dimensional

Isosceles triangular plate C2 2 0 0 2

Rectangular plate D2 4 0 0 4

Rectangular pyramid C2v 4 0 0 4

Equilateral triangular plate D3 2 1 0 4

Regular triangular pyramid C3v 2 1 0 4

Square plate D4 4 1 0 6

Square pyramid C4v 4 1 0 6

Regular hexagonal plate D6 4 2 0 8

Regular hexagonal pyramid C6v 4 2 0 8

Rectangular cuboid D2h 8 0 0 8

Regular triangular prism D3h 4 2 0 8

Regular tetrahedron Td 2 1 2 10

Square cuboid D4h 8 2 0 12

Regular hexagonal prism D6h 8 4 0 16

Cube Oh 4 2 4 20

may be created by using those characteristic modes which

are only weakly correlated with the symmetric excitations.

In contrast to the port definition based on the symmetry

analysis, the second step is expected to require some kind

of optimization procedure.

The practical considerations raised above will be the focus

of upcoming research with the aim to design prototype an-

tennas based on the presented theory. However, they should

not hide the fact that the symmetry analysis of character-

istic modes is of very fundamental nature. It offers basic

understanding of modal properties, especially regarding the

excitation of characteristic modes. It is therefore proposed as

a powerful tool to design multi-mode antennas with a higher

number of antenna ports than reported so far in the literature.
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