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Abstract - A Green’s function approach is used to
analyse mutual coupling in a finite array of open-
ended waveguides located in an infinite groundplane.
For the cross-sections of the cylindrical waveguides
there are nearly no restrictions. In the waveguides
the field is expressed as a sum of the transverse elec-
tric (TE) and transverse magnetic (TM) waveguide
modes, and expressions for the mutual admittances
of modes excited at the aperture are obtained using a
direct integration approach. From these expressions
the mode reflection and conversion coefficients are
determined. Computed and measured results are
presented for the reflection coefficient of the funda-
mental mode in a single waveguide due to the open
end as well as for the mutual coupling between two
waveguides for E- and H-plane dispositions.

I. INTRODUCTION

Waveguides of circular, rectangular and even elliptical
cross-section are commonly used as elements for direct
radiating arrays and in array feeds for reflectors. The
array radiation pattern, polarization properties and
active impedance are all influenced by mutual coupling
between elements [1, 2, 3].
This mutual coupling alters the mode content of the
aperture distribution by causing the complex amplitude
of the modes to differ from that of isolated elements, as
well as sometimes generating other modes. For accurate
prediction of the array performance this coupling should
be included in any design procedure.
The mutual coupling in a finite array located in a ground
plane can be analyzed very accurately using an integral
equation and a Green's function approach [2, 3]. The
integral equation is solved by replacing the fields in the
apertures with a finite series of waveguide modes. The
series coefficients are then determined by Galerkin's
method.
In the past, only the cross-sections mentioned above
were taken into account for determining the mutual
coupling of waveguide elements [2, 3, 4]. This paper
deals with a more general approach for the eigenmodes
of the waveguides which allows to take into
consideration nearly any kind of cross-section, for
example a rectangular cross-section with rounded
corners [5]. These roundings influence the cut-off
frequencies and field distributions of all modes, which
means that they influence the scattering parameters as
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Fig. 1: GEOMETRY OF CYLINDRICAL WAVEGUIDES
OPENING INTO A GROUNDPLANE

well as the beam shape, the sidelobe level and the active
impedance compared with a ideal rectangular cross-
section.

II. FORMULATION

A. Mutual Coupling

Consider N cylindrical waveguides terminating in a
common ground plane as illustrated in Fig. 1. The field
of each waveguide can be approximated as a sum of

)...1()( NiiM =  modes. In terms of the incident wave
amplitudes at the apertures, the amplitudes of the
reflected waves are
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is the modal scattering matrix of the complete array
environment. U is the unit matrix and Y is the
admittance matrix; a

r
 and b

r
 are the column vectors of

the incident and reflected mode amplitudes. The
elements of Y represent the mutual admittance of modes
m and n in the apertures i and j, respectively. They can
be calculated by the formula
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where
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 , zmh  and zmk  are the transverse as well as the axial

magnetic field and the wave number of mode m.
RjkRyxG )exp(),( −=  is the scalar Green’s function

with R = sqrt(x2+y2).

B. Eigenmodes of Waveguides with Arbitrary Cross-
Sections

The computation of eqn. (3) requires the knowledge of
the field distribution of the eigenmodes. This calculation
is based on the expansion of the fields into basic
solutions of the wave equation in polar-coordinates [5].
Therefore, the steady contour of each waveguide has to
be formulated in these coordinates, as well. Thus, it is
possible to describe a wide variety of waveguides, e.g.
an elliptical waveguide or a rectangular waveguide with
rounded corners as illustrated in Fig. 2. For the special
case of a square waveguide, one can generate a circular
cross-section (see Fig. 2d with a = b = c).
The normalized scalar potentials for waveguides with a
π-periodic boundary and infinite conductivity have the
following form for TEm- (or Hm-) modes
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and for TMm- (or Em-) modes
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Unlike the customary indication of the modes with two
index numbers, only one index number m can be given
here, since there is not a sole basic function per mode.
An infinite number has to be assumed instead. That is
why the modes have to be numbered all the way through
their cut-off wavenumbers. The index number gives no
clear indication of the appropriate field distribution.

With 222
zmcm kkk −= , eqn. (4)-(5) satisfy the boundary

conditions, and mΨ
r

 can be expressed in rectangular

components for TEm modes:
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Fig. 2: GEOMETRY OF THE CROSS-SECTION OF
DIFFERENT CYLINDRICAL WAVEGUIDES;

a)  CIRCULAR  b) RECTANGULAR  c) ELLIPTICAL
d) RECTANGULAR WITH ROUNDED CORNERS
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and for TMm modes:
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In eqn. (4)-(9) Nm is the normalization constant m, Cpm

are the expansion coefficients and kcm is the cut-off
wavenumber of mode m. The polarization angle ψm is
defined relative to the initial line in the local polar-
coordinate system (r, ϕ) that is parallel to the y axis for
TE modes and parallel to the x axis for TM modes.
For a numerical computation the considered sum of the
basic solutions of the wave equation in eqn. (4)-(5) has
to be limited. As a rule, an upper limit of pmax = 9 is
sufficient for most waveguide cross-sections. In
Table 1, the cut-off wavenumber of the dominant TE-
mode and TM-mode for a square waveguide (namely
TE10 and TM01) and a circular waveguide (namely TE11

and TM01) are compared with the computed solution. As
one can see, good agreement can be found. Further-
more, the cut-off wavenumbers of waveguides with
other cross-sections are also listed. These are generated
by varying the radius of the rounded corners.

III. MODE COUPLING IN ARBITRARY SHAPED
APERTURES

For modes coupling within the same aperture it is
apparent from eqn. (3) that there is a singularity in the



Table 1: COMPARISON OF COMPUTED NORMALIZED CUTOFF WAVENUMBER kcb AND EXACT SOLUTION FOR b/a=1
(FOR a, b, c SEE Fig. 2d)

computed solutionmode exact solution for a
square waveguide c/b=0 c/b=0.25 c/b=0.5 c/b=0.75 c/b=1

exact solution for a
circular waveguide

TE 1.570796 1.570801 1.591172 1.647432 1.731758 1.841184 1.841184
TM 2.221441 2.221499 2.222530 2.235281 2.285530 2.404825 2.404825

Green’s function which must be treated very carefully.
One way of doing this is to subtract the singularity out
of the source region indicated in eqn. (10)
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where G0 = 1/sqrt[(x-xj)
2+(y-yj)

2] is the static field
Green’s function. For evaluating the second integral it is
efficient to choose polar-coordinates (t, θ) with the
origin at the field point (x, y) (see Fig. 3). After
changing the variables to xj = x+tcosθ and yj = y+tsinθ
this integral can be written as
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where t(θ) = sqrt[(R(ϕj)cosϕj-x)2+(R(ϕj)sinϕj-y)2] is the
corresponding upper limit of the radial integration.
Since the contour of the aperture is known only by a
pair of variables (R(ϕj), ϕj) one has to express t(θ) in
terms of R(ϕj) and ϕj. This leads to

0)sin()sin()( =+−−− θϕπθϕϕ rR jj (12)

which has to be fulfilled by variation of ϕj. During the
integration this problem occurs once for each inte-
gration angle θ. Though this procedure is valid for (x, y)
inside the whole region of integration it is necessary to
subdivide this area to achieve an unambiguous
relationship between t(θ) and ϕj. The easiest way to do
this is to deal with one quadrant after the other and to
subdivide each quadrant into the regions defined by the
dotted lines in Fig. 3.
Considering the case that the two apertures are separate
no problem during a numerical integration occurs.

IV. RESULTS

The proposed method for evaluating the mutual
admittances has been implemented in a program to
compute the reflection coefficient as well as the
coupling coefficients for modes in waveguides of
rectangular cross-section with rounded corners. Fig. 4
shows the reflection coefficient of the dominant
TE-mode in a square waveguide as a function of
normalized frequency kb with the rounding factor c/b as
a parameter. The results for c/b = 0 and c/b = 1, for
square and circular cross-section respectively, can easily
be verified by literature. A small radius of the rounded
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Fig. 3: COORDINATE-TRANSFORM FOR EVALUATING
THE SINGULARITY
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AGAINST NORMALIZED FREQUENCY
a) MAGNITUDE  b) PHASE

corners does not have a distinct influence on the
reflection coefficient, while a larger radius has a great
effect especially on the phase.
To prove the presented theory, the mismatch of a circu-
lar waveguide whose contour is built by a square wave-
guide with a = b = 9.3mm and c/b = 1 was measured
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Fig. 5: REFLECTION COEFFICIENT AGAINST
FREQUENCY
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using a conducting screen 6mm thick. The measure-
ments are shown in Fig. 5 together with the computed
values using a single mode and a four mode approxi-
mation for the aperture field. Though only a limited
number of waveguide modes is used for representing the
aperture field distribution, theory and experiment are in
good agreement.
The coupling between two waveguides was calculated
using four modes in each waveguide. Fig. 6 shows the
results for TE1 ↔ TE1 coupling coefficient for identical
waveguides located in the E-plane with a spacing s. The
H-plane case is given in Fig. 7. As one can see, the
parameter c has a great affect on the mutual coupling.
Measurements of the coupling coefficient were
performed, as well. Two open-ended circular wave-
guides with a=b=9.3mm and c/b=1 were located in the
conducting screen with a spacing s. The magnitude of
the coupling coefficient of the dominant mode is shown
in Fig. 8 for E-plane and H-plane dispositions. Once
again, theory and experiment are in good agreement.

V. CONCLUSION

An analysis of mode coupling in an array of waveguides
with nearly arbitrary cross-sections opening into an
infinite ground plane has been presented. The
formulation of this approach is valid not only for
identical waveguides but may be applied to calculate
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Fig. 8: MAGNITUDE OF COUPLING COUEFFICIENT
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coupling between dissimilar apertures, as well as to deal
with different cross-sections in the same waveguide
array. Theoretical results have been provided for square
waveguides with the radius of the rounded corners as a
parameter. The theory has been verified by measure-
ments with circular waveguides. It has been observed
that in the operating region of the fundamental mode the
rounded corners do have a great effect on both
reflection and coupling coefficients.
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