MIMO Performance of a Planar Logarithmically-Periodic Antenna

Leibniz Universität Hannover
Institut für Hochfrequenztechnik und Funksysteme
Outline

1. Introduction
2. Antenna influence on channel capacity
3. Model verification in a simple LOS scenario
4. Performance measurement in office environment
5. Consequence for MIMO antenna design
Introduction

• Channel capacity can be increased using polarization diversity
• Log. per. antenna provides a high pol. diversity and will be used for the measurement
• The property will be shown by measured channel matrices in a well defined LOS channel
• To prove the performance in a realistic environment results taken in an office environment will be demonstrated
• The measurements were take by two different hardware setups
Outline

1. Introduction

2. Antenna influence on channel capacity

3. Model verification in a simple LOS scenario

4. Performance measurement in office environment

5. Consequence for MIMO antenna design
Introduction

The MIMO channel

- non-stationary impulse response in baseband domain
- stationarity for a short time period
- \(t_c \approx 18 \text{ms} \) @ \(v_d = 5 \text{ km/h}, 5.2 \text{ GHz} \) for indoor environment
- impulse response is a complex value during one coherence time interval
- high SNR and high rank lead to a high channel capacity!

What can we do on antenna side to increase the channel capacity?

\[
\tilde{H} = \begin{bmatrix}
\tilde{h}_{11} & \tilde{h}_{12} & \cdots & \tilde{h}_{1N} \\
\tilde{h}_{21} & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots \\
\tilde{h}_{M1} & \cdots & \cdots & \tilde{h}_{MN}
\end{bmatrix}
\]

\[
C_{\text{MIMO}} = \log_2 \det \left(\bar{E} + \frac{P_T}{\sigma_N^2 M} \tilde{H} \tilde{H}^H \right) = \sum \log_2 \left(1 + \frac{P_T}{\sigma_N^2 M} \lambda_i \right)
\]
\[\tilde{H} = \sqrt{P} \left(\sqrt{\frac{K}{K+1}} H_{\text{LOS}} + \sqrt{\frac{1}{K+1}} H_{\text{NLOS}} \right) \]

Rice-Matrix

- fixed channel coefficients
- High rank of \(H_{\text{LOS}} \) can be achieved by:
- **Polarization diversity**
 (high polarization decoupling \(\text{AR} \) (Axial Ratio) of the involved antennas)

\[
\text{AR} = \frac{|E_{p_{\text{max}}}|}{|E_{p_{\text{min}}}|}
\]

\[
|H_{\text{LOS}}| = \begin{bmatrix} \left| h_{bb} \right| & \left| h_{br} \right| \\ \left| h_{rb} \right| & \left| h_{rr} \right| \end{bmatrix} = \begin{bmatrix} 1 & \approx \frac{1}{\text{AR}} \\ \approx \frac{1}{\text{AR}} & 1 \end{bmatrix}
\]

Example:

- \(P_v = 1 \)
- \(P_H = 1 / \text{AR}^2 \)

\(C_{\text{MIMO}} \) grows as secondary diagonal elements vanish.
Introduction

\[
\tilde{H} = \sqrt{P} \left(\sqrt{\frac{K}{K+1}} H_{LOS} + \sqrt{\frac{1}{K+1}} H_{NLOS} \right)
\]

Rayleigh-_matrix

- iid channel coefficients with stamped on correlation
- High rank of \(H_{NLOS} \) can be achieved by minimizing antenna correlation:
 - Pattern diversity
 - Spatial diversity
 - Polarization diversity

Envelope correlation coefficient:

\[
\rho_r \approx \left| \rho_{ij} \right|^2 = \frac{|R_{ij}|^2}{\sigma_i^2 \cdot \sigma_j^2}
\]

Antenna patterns in
- \(\vartheta \)-polarization
- \(\phi \)-polarization

\[
R_{ij} = K \cdot \int_{0}^{2\pi} \int_{0}^{\pi} C_{\vartheta} (\vartheta, \phi) \cdot C_{\phi} (\vartheta, \phi) + XPR \cdot C_{\phi} (\vartheta, \phi) \cdot C_{\phi} \cdot (\vartheta, \phi)
\]

\[
\rho_{ij} = \int_{0}^{2\pi} \int_{0}^{\pi} p_{ij} (\vartheta, \phi) e^{i k d} \sin(\vartheta) d\vartheta d\phi
\]

Spatial separation

Cross polarization ratio (channel property)

Probability density function including AOA, AOD and angular spread
Properties of the logarithmically-periodic antenna

- **Trapezoidal**, self-complementary four-arm \((N = 4)\) antenna for \((1 – 6)\) GHz
 - **Dual-linear polarization**
 - Optimized cross-polarization decoupling

\[
\begin{bmatrix}
1 \\
0 \\
-1 \\
0
\end{bmatrix}, \quad \begin{bmatrix}
0 \\
1 \\
0 \\
-1
\end{bmatrix}
\]

Mode 1

Mode 2
Outline

1. Introduction

2. Antenna influence on channel capacity

3. Model verification in a simple LOS scenario

4. Performance measurement in office environment

5. Consequence for MIMO antenna design
Model verification in a simple LOS scenario

LOS scenario
Model verification in a simple LOS scenario

Transmitter

CW source
R&S SM300

Balun
Log.-Per. antenna

2,45045 GHz

2,4503 GHz

CW source
Anritzu MG3695A

Receiver

Log.-Per. antenna

R&S FS 300

Spectrum analyzer

R&S FS 300

150 cm

95 cm
Model verification in a simple LOS scenario

- Measurement of channel matrix at 2.4 GHz
- Separation by using two nearby frequencies (Δf = 150 kHz)
- Valid because of $B_{C,90\%} = 200$ kHz @ $\sigma_t=100$ ns
- Sweep time for spectrum analyzers $t \approx 1$ ms
- Valid because $t_c \approx 18$ ms

- Channel capacity is calculated in dependence of the rotation angle between the two antennas in 10° steps
Model verification in a simple LOS scenario

Comparison between measurement and simulation

C_{total}, C_{sub1}, C_{sub2}

C_{total} measured
C_{sub1} simulated
C_{sub2}

φ / deg

$C / \text{bit/s/Hz}$

$2 \cdot \varphi_{\text{pol}} = 90^\circ$

φ / deg

$2 \cdot \varphi_{\text{pol}}$

$\varphi_{\text{pol}} \approx 8^\circ @ 2.4 \text{ GHz}$

Model verification in a simple LOS scenario

Comparison between measurement and simulation

$2 \cdot \varphi_{\text{pol}} = 90^\circ$

φ / deg

$2 \cdot \varphi_{\text{pol}}$

$\varphi_{\text{pol}} = 8^\circ @ 2.4 \text{ GHz}$

φ_{pol}
Outline

1. Introduction

2. Antenna influence on channel capacity

3. Model verification in a simple LOS scenario

4. Performance measurement in office environment

5. Consequence for MIMO antenna design
Performance measurement in office environment

Wireless prototyping system HaLo 220 for 2x2 MIMO at WLAN frequencies

- 2 CW signals are used for determining the channel matrix
- Signals are being coherently sampled at the two receivers (5 MSa/s)
- Acquisition time for 1 channel matrix = 10 ms
- 1000 channel matrices for different channel scenarios
Performance measurement in office environment

Office environment for LOS and NLOS measurement

NLOS
LOS 2.4 GHz results

- **Red curve**
 - LOS component dominates (high slope)
 - Subchannel capacity is almost equal
 - Highest sum capacity

- **Blue curve**
 - Strongest subchannel equals that of the red case
 - Vertical polarization of monopoles suppresses the horizontal polarized wave from TA

- **Black curve**
 - Comparable to blue case, but more influence of NLOS components (different slope)
Red curve
• LOS component still dominates

Black curve
• Again more NLOS components, outage rate lowered in the weaker subchannel
NLOS 5.4 GHz results

Red curve
• NLOS components decrease slope
• SNR decreases (curve moves left)
• Capacity of weak subchannel decreases but is still better than black case

Black curve
• Capacity of strong subchannel is just slightly altered
• Capacity of weak subchannel decreases
Outline

1. Introduction

2. Antenna influence on channel capacity

3. Model verification in a simple LOS scenario

4. Performance measurement in office environment

5. Consequence for MIMO antenna design
Consequence for MIMO antenna design

- Polarization diversity of adjacent antenna elements in a MIMO array leads to a good MIMO performance
- Planar antennas with high AR enable high decorrelation at little space
- Combination of spatial and polarization decoupling is useful for antenna switching